
Platzhalter, damit als PDF das Dokument
in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.

fritz
Stempel
Platzhalter, damit als PDF das Dokument in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.
--

This page added for reading the document on 2 pages.
original and for printing from page 2

fritz
Stempel

Series 32000/EP™
GNX Version - 4.4

C Optimizing Cross-Compiler
and Language Development Tools

for MS-DOS®
Release Letter

NSC Part Number: 433511225-001
June 1992

PREFACE

This Release Letter describes the GNX Version 4.4 C Optimizing Cross-Compiler and Lan­guage Development Tools package for MS-DOS. Included are a general description of the tools, the installation procedure, and a list of known software limitations.
This Release Letter should be saved for future reference.

For user-support call:
U.S. and Canada: +1 (800)759-0105

Europe: (W. Germany) +49 (0)81-4110-3330
South East Asia (Hong Kong): Phone: +852 737-1800/1920, Fax: +852 736-9931/9921

Japan: Phone: +81 (0)3-3299-7001, Fax: +81 (0)3-3299-7000

l

11

CONTENTS

1. GENERAL DESCRIPTION...1
2. RELEASE PACKAGE CONTENTS..2
3. INSTALLATION PROCEDURE...5

3.1 INSTALLING THE PACKAGE ..5
3.2 BUILDING DBUG’S SERIAL F0 CONNECTION TO TARGET6

3.2.1 Installation for the HP 64772/8/9 ISE Using Serial I/O............................6
3.3 INSTALLING PC/TCP NETWORK SOFTWARE .. 6

3.3.1 Configuring Your IBM/PC to Operate with Ethernet................................ 6
3.4 BUILDING DBUG’S ETHERNET CONNECTION TO TARGET................... 8

3.4.1 Hardware Installation of the Series 32000 Development Board............... 83.4.2 Installation of HP 64700 Emulator for Use With LAN Interface.............. 8
4. COMPATIBILITY ISSUES...10
5. LIMITATIONS.. 11

5.1 ASSEMBLER ...11
5.2 CPP .. 11
5.3 DBUG .. 11
5.4 MEMORY ...12

6. KNOWN SOFTWARE ERRORS...13
6.1 C COMPILER ..13
6.2 SPROF ... 17
6.3 C PREPROCESSOR (CPP) ...18
6.4 ASSEMBLER ...19
6.5 MONITORS..19
6.6 DBUG .. 19

7. HINTS... 23
7.1 INCOMPATIBILITIES WITH OTHER GNX PORTS 23

7.1.1 Moving from UNIX to MS-DOS Based Platform...................................... 23
7.1.2 Setup Environment to Use GNX Tools..23
7.1.3 GNX Target Configuration File...247.1.4 Invocation Line Length..24
7.1.5 C Compiler Options... 247.1.6 The Assembler Preprocessor (m4)...24
7.1.7 DBG32.. 25
7.1.8 NCMP... 25
7.1.9 DBUG User Interface...25
7.1.10 DBUG Initial Commands File...25
7.1.11 DBUG Log File..267.1.12 DBUG Serial Communication...26
7.1.13 MINSTALL... 26

iii

7.2 CONFIGURING GNX TOOLS MEMORY REQUIREMENTS 26
7.3 DBUG AND THE HP64772/8/9 EMULATOR COMMUNICATION PROBLEMSAND WORKAROUNDS 27

8. LIFE SUPPORT POLICY..28

IV

1. GENERAL DESCRIPTION

Version 4.4 of the GNX C Cross-Compiler and Language Development tools for MS-DOS is a new port of the GNX Version 4.4 development tools. National Semiconductor’s tools are also available for various kinds of UNIX-based workstations, as well as for VAX/VMS.
The GNX tools require a 386 or 486-based PC, running MS-DOS 3.3, 4.01 or 5.0. At least
11 Mbytes of hard disk memory, are required to install the software. While you can run the GNX tools with 4 Mbytes of main memory, it is recommended that 8 Mbytes are installed.
The release is compatible with the other ports of the GNX Version 4 tools. This Release Letter assumes that you are familiar with the GNX Version 4 reference manuals.
National Semiconductor’s Series 32000 GNX Language Tools are a set of software develop­ment tools for the Series 32000 /EP™ microprocessor family. The GNX Language Tools im­
plement AT&T’s Common Object File Format (COFF) with extensions by National
Semiconductor.
DBUG, the GNX debugger, currently supports the following target systems:

• NSV-FX-CG-EDB, NSV-CG160-EDB, NSV-GX32-EDB, NSV-GX320-EDB, NSV-FX16- FAX-EDB, AM160-EDB, FX164-EDB and CG160LX-LBP evaluation boards.
• HP64772, HP64778 and HP64779 Hewlett Packard In-System Emulators.

National Semiconductor’s C Optimizing Cross-Compiler is an advanced optimizing compiler
for the Series 320001EP™ microprocessor family.
The C Optimizing Compiler implements the C language as described in the Programming
Language by Kernighan and Ritchie. It also implements most of the important features in
the ANSI C standard such as function prototypes, const and volatile type qualifiers, and the signed keyword. The compiler is fully compatible with the System V C compiler, a compiler derived from the portable C compiler (pec). In addition, the C Optimizing Com­
piler includes important extensions for programming embedded applications such as ASIS
(Application Specific Instructions) support, interrupt/trap handling in C, and asm state­ments. For more information refer to the GNX Version 4 C Optimizing Compiler Reference Manual.

1

2. RELEASE PACKAGE CONTENTS

Part Number Description
433511225-001to433511225-005

Five high density 3 1/2 inch floppy disks labeled “NSW-ASMC-4-BDOS GNX 4.4 Version C + Assembler Package”.
424310758-001 Series 32000 Programmer's Reference Manual.
424010497-004 GNX - Version 4 Assembler Reference Manual.
424010507-004 GNX - Version 4 COFF Programmer's Guide.
424010???-004 GNX - Version 4 Commands and Operations Reference Manual
424010516-004 GNX - Version 4 C Optimizing Compiler Reference Manual
424010506-004 GNX - Version 4 Linker User's Guide.
424010508-004 GNX - Version 4 Support Libraries Reference Manual.
424511103-004 GNX - Version 4 Symbolic Debugger (DBUG) Reference Manual.
420510716-004 Development Board Monitor Reference Manual.
424511080-001 NS32CG16 Printer/Display Processor Programmer's Reference Supplement.
419308225-001 The C Programming Language by B.W. Kernigham and D. M. Ritchie
433511225-001 This release letter.

2

The major software components of th is package are:
Name Description
nmcc.exe The GNX C Optimizing compiler
nasm.exe The assembler for GNX assembly language source code.
nmeld.exe The linker that resolves references between object files and library rou­tines and assigns relocatable addresses to produce Series 32000/EP executable files.
nar.exe The archiver that stores objects in a library for convenient retrieval by the linker.
ncpp.exe The C preprocessor.
nbum.exe A PROM programming utility.
nsize.exe A utility for displaying the size of different sections within a GNX object or executable file.
nstrip.exe A utility to remove symbol table information from a GNX object or executable file.
nnm.exe A utility to display the symbol table of a GNX object or executable file.
ncmp.exe A utility to compare two GNX files.
gts.exe A menu driven program that constructs a target configuration file.
dbug.exe A program for downloading and debugging GNX code on Series 32000!EP Development Boards, or the HP64772/8/9 In-System Em­ulator.
sprof.exe GNX Source level profiler
gx32ed,gx320ed,cgl6ed,cgl60ed,fxl6fax,aml60ed,cgl60ix,cmon

Monitors for the Series 32000/EP Development Boards.

cfig386.exe,switches.doc Phar Lap configuration utility and documentation.
lib/libm.a,lib/libxm.a,lib/lib381m.a,lib/lib381xm.a,lib/libhm.a

Math libraries for GNX programs.

lib/libhfp.a A High Performance Floating-Point Emulation library.

3

Name Description
lib/libfpe.a,lib/libxfpe.a Floating-Point Emulation and Enhancement (FPEE) libraries to support floating-point operations.
lib/libc.a,lib/libxc.a,lib/libhc.a

A C routine library for Series 32000/EP based target boards.

lib/cc_fe.exe GNX C Compiler front end.
lib/opt.exe GNX common optimizer
lib/cgen_cof.exe GNX common code generator
lib/libctp.a,lib/libxctp.a,lib/libhctp.a

GNX compiler libraries

lib/pgen.exe A tool which generates information used by the GNX source level profiler.
lib/pfb_exit.o,lib/xpfb_exi.o _exit routines - customized version for profile information gathering.
include/ns32000.h,include/cgl6.h,include/gx320.h

ASIS include files.

4

3. INSTALLATION PROCEDURE

At least 11 Mbytes of disk space are required to install the GNX software.

3.1 INSTALLING THE PACKAGE
1. Insert disk #1 of the NSW-ASMC-4-BDOS GNX 4.4 Version into the appropriate disk

drive.
2. Select this drive (e.g., B: <ENTER>)
3. Enter the command:

install

4. Carry out the installation procedure as instructed by the interactive install program.
Install will carry out the following tasks:

• check for correct operating environment.
• copy the GNX software to the directory you select within the program.
• verify that the GNX software has been copied correctly.
• optionally, change the path variable and set the g n x d i r variable in the

autoexec.bat file to include the directory in which the GNX software has been
installed.

The software package is now installed in the selected directory.
If, after you reboot the system and the updated autoexec.bat file is executed, the error
message

out of environment space
is issued, there is insufficient environment space available. You should increase the envi­ronment space available for your command.
1024 bytes put the line:

shell = c :command.com /p
in your config. sys file.

For example, to set the environment space to

/e:1024

5

3.2 BUILDING DRUG’S SERIAL I/O CONNECTION TO TARGET
If you are using DBUG for remote debugging through a serial I/O port, no special arrange­ments are needed. However, you should ensure that there is no inconsistency between the
DBUG connection parameters and the board or HP emulator.
You should also ensure that DBUG and the remote board are both set to work with the same baud rate.

3.2.1 Installation for the HP 64772/8/9 ISE Using Serial I/O
1. Connect a serial line from the host to the emulator’s port A.
2. Set all switches in the rear of the emulator to 0.
3. Disable the local echo by setting switch S8 to 1.
4. Enable Xon/Xoff protocol by setting switch S13 to 1.
5. Use switches SI - S3 to change the default baud rate (default is 9600 baud with all

three switches set to 0). Refer to the HP 64700 Emulators Overview I Installation I Sup­
port Manual for additional details.

NOTE: The emulator must be turned OFF and then ON after changing anyswitch settings in order for these changes to be recognized by the emula­
tor’s firmware emulator.

3.3 INSTALLING PC/TCP NETWORK SOFTWARE
If you intend to connect your target board through Ethernet, you must install the Pathway
Client NFS package (Version 1.1 or higher) from Wollongong. The NSID for this package is
NSW-TCPIP4-BDOS.

3.3.1 Configuring Your IBM/PC to Operate with Ethernet
1. Install the 3COM controller card (Ethernet Link II™, Part Number 3662-00).
2. Install the Pathway from Wollongong - Client NFS package Version 1.1 or higher. This

includes the installation of the Drivers and the Kernel.

6

Drivers Installation:
1. Insert the Drivers diskette into drive A and type:

a :
pwinstal C:

2. For thick Ethernet installation, add the line:
3c503 -T: 0 -1:5 -D:l

to the autoexec.bat file.
For thin Ethernet installation, add the line:

3c503 -T:2 -1:5 -D:l

to the autoexec.bat file.
3. Add c : \pathway to your path in the autoexec .bat file.

Kernel Installation:
1. Insert the Kernel diskette into drive A and type:

a :
pwinstal C:

2. Reboot your PC.
3. Run the CUSTOM program with the command: custom

Set the PC Internet address (option 1).
Update the network physical- address-translation-cache with
your board Internet and Ethernet addresses (enter 6 in the program customization menu and then enter 2).
Exit and save CUSTOM settings (option 9).

4. Add the line pwtcp to the autoexec.bat file.
5. Reboot your PC.
6. Add the board and PC names, and the Internet address, to the file

c :\pathway\hosts

For example:
139.187.218.2 pc21
139.187.218.3 fxll

7. Test your PC and Board connection using the PING command:
ping boardname

Refer to the Pathway Client NFS Installation Guide for further information.

3.4 BUILDING DRUG’S ETHERNET CONNECTION TO TARGET
If you plan to use DBUG for remote debugging via Ethernet, the following steps must be taken to complete the DBUG and remote target connection:

3.4.1 Hardware Installation of the Series 32000 Development Board
1. Install the Version 4.4 monitor PROMs on your development board.
2. Install the Ethernet controller card (Ethernet Link II™, Part Number 3662-00) on the development board and connect it to your LAN.
3. Set the I/O jumper on the 3COM board to 300.
4. Disable the memory jumper on the 3COM board.
5. Configure the board to the appropriate PROM size (refer to your board reference man­

ual).
6. Configure the board jumpers or DIP switches to Ethernet connection (refer to Appendix A of the Series 32000 Development Board Monitor Reference Manual)

3.4.2 Installation of HP 64700 Emulator for Use With LAN Interface
The HP 64700 Series Emulator must be configured with certain network parameters before
it can operate on the LAN. These network parameters are held in nonvolatile memory with­
in the HP 64700 Series Emulator. The following is a description of setting the Emulator
LAN parameters via the terminal interface. For further information, see HP 64700 Series Installation / Service I Support Manual.
To configure LAN parameters via the Terminal Interface:

1. Set all the rear-panel switches to the down position. This will make the HOST port the active port, running at 9600 baud as a DCE.
2. Connect an ASCII terminal to the host port with a 25-pin RS-232-C cable.
3. Turn on the HP 64700 Series Emulator.
4. Type lan and press <return>, You should see the current LAN configuration values.
5. Assign an Internet address to the HP 64700. This address should be supplied by your LAN administrator.

For example, to assign the Internet address 192.6.94.2 to the HP 64700 emulator, en­ter:
R>lan -i 192.6.94.2 <retum>
The Internet address, and any other LAN parameters, are stored in nonvolatile memo­
ry in the HP 64700 LAN interface. The address you assign will remain the Internet ad­dress until a new lan -i command is issued. Turning off the power to the emulator does not change the Internet address

6. Set S16 to ON.
Set S15 to ON, if you use the AVI connection.

9

4. COMPATIBILITY ISSUES

This package has been developed and tested on an IBM/PC running MS-DOS 3.3 and MS-
DOS 5.0. This package can also be installed and used on an IBM/PC running MS-DOS 4.01 operating system.
All the GNX tools run in the enhanced mode of MS-Windows® Version 3.1.

10

5. LIMITATIONS

5.1 ASSEMBLER
• Limitation Description: The assembler optimizes displacement size for referenced

labels of a br instruction, which follow the current location, provided that no .align
statement appears between the br instruction and the referenced label. Displacement
size of referenced labels which precede the current location, is always optimized.
Workaround: Specify the displacement size explicitly.

5.2 CPP
• Limitation Description: cpp can not process lines which contain more than 1800

characters. If cpp encounters such a line while processing a code, the error message
token too long is issued, and processing terminates.
Workaround: Write shorter lines, or if compiling by nmcc, avoid using cpp by using
the suffix . i for the program.

5.3 DBUG
• Limitation Description: The interrupt key <control-C> is ignored in the MS-DOS

environment.
• Limitation Description: Symbolic debugging of code that is included in C program

include files, is greatly restricted. Instead of listing the source of included files, DBUG
only shows the line with the #include directive.

• Limitation Description: DBUG might access four extra bytes on the stack, when
working with the emulator.
Workaround: To avoid this behaviour, use the config or the load command to ini­
tiate the SP register to <maximum-stack-address>-4.

11

5.4 MEMORY
• Limitation Description: In some rare cases the GNX tools might exit with one of

the two error messages:
fast alloc: virtual memory overflow or
Phar Lap err 10118: can't load EXP file: GNXDIR\<toolname>
Memory error: insufficient memory available

These errors occur when the memory requirements of the tool you are using exceed the size of the physical memory currently available of your IBM/PC.
Workaround: If such an error occurs in your system you are advised to expand the system memory. If this error occurs while using the GNX debugger (DBUG) you can
bypass it by using the debugger -p option.See Section 7.2 for further information.

12

6. KNOWN SOFTWARE ERRORS

6.1 C COMPILER

[TA250]
• Problem: If the post-increment operator is used on the same variable in more than one actual function parameter, the results will be incorrect.

Example:
j = func (i++, i + +) ;

Workaround: Use
tempi = i++;
temp2 = i++;
j = func(tempi, temp2);

[REA1078, 1463]
• Problem: Code that contains static routines in which the actual parameter is not as­

signment compatible with the formal parameter (for example the actual parameter is
a structure larger than 4 bytes and the formal parameter is declared to be a pointer), causes an internal optimizer error.
Example: In the following example, the formal parameter of the routine f oo () is a
pointer and the actual parameter is a structure. The code generator will produce an
internal error during compilation with optimization.

struct {
int i ;
char c;} s;

main ()
{

foo (s) ;
}
static foo(p)
int *p;
{

return *p;
}

13

Workaround: Declare the formal parameter to be of the actual parameter type.

[REA1234]
• Problem: The compiler generates incorrect code for the post-increment of a bit field.

Example: The following program will not print PASSED:
main ()
{

struct { unsigned b:l} s;

s . b = 1 ;
if (s.b s.b++)

Workaround: Separate the usage from the increment.

[REA1248]
• Problem: When a volatile variable is used as an array index, and the program is com­piled with the check option -a, spurious accesses to the volatile variable are generat­ed.

Example: When the following code segment is compiled with the check option -a,
spurious accesses to i are generated.

volatile int i;
int a [10];
f 0
{

return a [i];}
Workaround: Assign i to a temporary variable and use it to index the array.

[REA1741]
• Problem: The compiler accepts a combination of function prototypes and function dec­

larations, which is incorrect according to the ANSI standard.
Example: The following program is accepted by the compiler although it is erroneous.

14

void foo(short a,char b,float c) ;
void foo(a, b, c)
short a;
char b ;
float c;{}

[REA1742]
• Problem: The compiler does not accept a combination of function prototype and func­tion declaration which is correct according to the ANSI standard.

Example: The compiler erroneously complains that the following program contains a
redefinition of the function foot).

void foo(int a,int b,double c) ;
void foo(a, b, c)
short a;
char b;
float c;{}

[REA2216]
• Problem: The compiler issues a warning on a correct code in the case of a structure member which is a pointer to a function returning an enumerated type, if this struc­

ture member is not the first element in the structure and it appears twice as the right-hand side of an assignment.
Example: The compiler will issue a warning functions returning different
types when compiling the following correct program.

typedef enum { A,B} names;
struct s {

int i;
names (*fun)();

} fstruct;
foo() {

names (*loc_fun)();
loc_fun = fstruct.fun ;
loc_fun = fstruct.fun ;

15

[REA 2284]
• Problem: The compiler produces an incorrect warning when compiling, with the switches -ow, -a , a single-module program containing character array initializations.

Example:
foo() {

static char string[] = "abc";}
Workaround: Do not use the -a switch with the -ow switch when compiling single­module programs. Single-module programs do not require this switch.

[REA 2360]
• Problem: The compiler rejects programs which correctly use function prototypes con­

taining the register storage class specifier.
Example: The compiler issues severe error messages on the following program, al­
though the program is syntactically correct.

extern int funcl(int i) ;
int fund (register int i) {}
extern int func2(register int j);
int func2(j) register int j; {}

Workaround: Do not use the register storage class specifier in function prototypes.

[REA 2556, 2563]
• Problem: extern without const makes an initialized const go to .data.

Example:
extern int i;
const int i = 321; /*this goes to .data instead of to .text */

Workaround: Add const before the extern:
const extern int i;
const int i = 321;

16

[REA 2798]
• Problem: The interrupt pragma for a function which contains a call to setjmpO li­brary routine, is ignored.

Example: The following routine is compiled as a regular routine, although it is prop­erly declared as an interrupt routine.
#include <setjmp.h>
static jmp_buf buf;

#pragma interrupt (handler, save_regs=int_regs)
void handler ()
{

if (setjmp(buf)) ;}
Workaround: Call another routine that calls setjmpO as follows:
#include <setjmp.h>
static jmp_buf buf;

#pragma interrupt (handler, save_regs=int_regs)
void
{

if (setjmp(buf)) ;}
void handler ()
{
real_handler() :
}

6.2 SPROF

[REA1583]
• Problem: The header and tail code of loops containing inner loops are counted incor­

rectly.
Example: Sprof states that the header of the outer loop in the following code seg­ment was executed 100 times and the tail was executed once.

int j = 100;
int n = 2;
main ()
{

int k, i;
17

for

}}
foo (:{}

(i = 0;i < j; i++) {
for (k=0; k<n; k++){

foo ();
foo();

}

6.3 C PREPROCESSOR (CPP)

[REA 2269]
• Problem: The preprocessor sometimes fails when handling very large macro defini­

tions (macros who’s size exceeds 25K bytes).
Workaround: Divide the macro definition into several smaller macros.

[REA 2396]
• Problem: The error message for an invalid recursive macro is issued too many times

on a single illegal invocation.
Workaround: Not needed.
Example: The preprocessor prints the error message more than once for the follow­
ing program:

#define Mat(i,j)Mat[(i)*Len+(j)]
void M(double Mat[]) {}

[REA 2671]
• Problem: When the number of FILES, defined in config. sys, is 10 (the default) cpp

issues a warning that the fourth nested include file does not exist, instead of Can ' t
open.

Workaround: Change the config.sys file to enable more than 10 files to be opened
at the same time, e.g., use: files=30.

18

6.4 ASSEMBLER

[REA 1979]
• Problem: The assembler uses, as default, double-word as an SB offset for static vari­ables, even when byte is sufficient.

Example: In the following program:
. static
.double 5
.module std, sb=. static
. text
movd X X , rO

The displacement produced for xx is four bytes long instead of one.
Workaround: Use :b to enforce one byte displacement.
For example:

movd xx:b,rO

6.5 MONITORS

[REA 2192]
• Problem: SVC 10/11 does not work in direct exception.

Workaround: Do not use SVC 10/11 in direct exception.

6.6 DRUG

[REA 1860]
• Problem: The tracei command has no effect when working with a HP Emulator and debugging a program which was compiled with the -0 flag but with no symbolic infor­

mation generation.
Workaround: Use traceh start at <address>, or recompiling with symoblics.

19

[REA 1910]
• Problem: The test-and-branch code at the end of a loop is not listed by a list com­mand with the i option.

Example: In the following program DBUG does not print the code at &main+0xl5 and &main+0xlb.
static int j;
main ()
{
int i ;

while (j){

Part of a DBUG session:
list 1,20 i
1 static int j;
2 main ()
3 {
main enter [], 0x4
4 int i;
5 while (j)
main+0x3 cmpqd 0x0, j
main+0x9 beq main+0x20
6 {
7 i = i +
main+Oxe addd $0xd, -0x4
8 }
9 }
main+0x20 exit []
main+0x22 ret 0x0
10
&main/10i
main enter [], 0x4
main+0x3 cmpqd 0x0, j
main+0x9 beq main+0x20
main+Oxe addd $0xd, -0x4
main+0xl5 cmpqd 0x0, j
main+Oxlb bne main+Oxe
main+0x20 exit []
main+0x22 ret 0x0
exit dj spb $0x4
exit+0x3 bsr „cleanup

Workaround: Use &<symbol>/i to get disassembly of all the text.

20

[REA 2198]
• Problem: DBUG identifies the address of a const variable as a part of the nearest line of its module.

Consider the following program:
const int a = 3 ;
main(){}

DBUG session:
(dbug) whatis &a
main (), line 2 in "example.c"

[REA 2213]
• Problem: When loading to an HP Emulator with the no fast option, the loaded code may be corrupted.

Workaround: Use binary load (the default loading option).

[REA 2508]
• Problem: When using partial symbolics -p option, there is no way to access a global

variable whose name is the same as a module name.
Example:
file sss.c:
int sss;
main ()
{
sss = 13;
}

nmcc -g -o glob_var sss.c
dbg -p glob_var

dbg - Version 4.4
Type 'help' for help.
reading symbolic information ...
connect node tafxlO
connection with tafxlO [139.187.218.103] established
setup in remote mode
load with sp 0x30000

21

loading
loaded 3252 bytes of code, 2288 bytes of data
total of 5540 bytes_loaded
whatis sss
source file "sss.c"
whatis .sss
source file "sss.c"
file sss.c
st in main
[1] stop in main
r
[1] stopped in main at line 4 in file "sss.c"
4 sss = 13;
s#
execution completed
p sss
[module]
quit with save

[REA 2600]
• Problem: After a begin command, the use path may be corrupted.

Workaround: The use path must be given to the debugger again after begin is used. To avoid retyping it each time, set the use path in your dbug.ini file using the alias
command (e.g., alias usepath "use a b c").

22

7. HINTS

7.1 INCOMPATIBILITIES WITH OTHER GNX PORTS
The GNX 4.4 MS-DOS port is compatible with the UNIX and VMS 4.4 ports. There are, however, some incompatibilities due to differences in the operating systems. These differ­
ences are summarized below.

7.1.1 Moving from UNIX to MS-DOS Based Platform
Certain differences between the MS-DOS and the UNIX operating systems’ functionalities might cause problems when moving code from a UNIX environment to a MS-DOS based platform:

• File Names The file name length, in the MS-DOS operating system, is
limited to an 8-character prefix and a 3-character extension.
In general, this restriction does not cause any problems, as
both the GNX tools and the operating system truncate long
file names. However, the various make utilities, currently
available on MS-DOS, do not recognize file names that do not comply with this restriction.

• Invocation Line Length The length of invocation lines is limited to 128 characters.
Invocation lines that are longer than 128 characters will re­
sult in an error. The GNX tools on MS-DOS provide an option to specify command line parameters via an indirect options file.

• Make Utility The make utility is not a standard utility in the MS-DOSenvironment. To use make you must first purchase a make
utility. We currently recommend using the POLYMAKE
utility by Intersolv Inc. To the best of our knowledge, it is
compatible with the UNIX make utility.

7.1.2 Setup Environment to Use GNX Tools
By default the GNX tools are located in the directory C:\GNXDIR. The tools determine
their exact location, and the path of the sub-tools they invoke, according to this path. You can override the default location of the GNX tools by setting up the environment variable
GNXDIR to point to the directory where the GNX tools are located.

23

NOTE: You may request the installation procedure INSTALL to change your
autoexec.bat file to include the appropriate setting of the GNXDIR environment variable.

7.1.3 GNX Target Configuration File
The GNX target configuration file is called gnx.ini. The global configuration file,
GNXDiR\gnx.ini, specifies the system-wide setup. The HOME\gnx.ini file (if it exists) over­rides these target parameters (home is an environment variable that must be defined). In
addition all tools look for, and read, a gnx. ini file in the current directory. The gnx. ini files can be modified/generated using the GNX Target Setup (GTS) utility.

7.1.4 Invocation Line Length
As invocation line length on MS-DOS is limited to 128 characters, which is sometimes too
short to specify all options. An indirect option file allows you to specify additional options.
This is used by specifying @optionfile on the command line.
The following tools support an indirect options file:

nmcc
nasm
nmeld
nnm
nsize
nar
nstrip

For more details, see the GNX Commands and Operations Manual.

7.1.5 C Compiler Options
When using "" to compound options (usually when using the -w flags to pass options to the GNX C preprocessor (-wp), GNX assembler (-wa) and GNX linker (-wi)) the "" should surround both the option directive and its values, e.g., in order to pass the "-d linker.-
def" option to the GNX linker you should use the following:

nmcc "-Wl,-d linker.def" x.c

7.1.6 The Assembler Preprocessor (M4)
The M4 (-m option) preprocessor is not supported by the GNX Assembler. Instead, you can
use the assembler’s own powerful macro language.

24

7.1.7 DBG32
The old GNX debugger, DBG32, is not available.

7.1.8 NCMP
The -s flag of ncmp is not supported.

7.1.9 DBUG User Interface
The MS-DOS version of DBUG 4.4 does not currently provide a window-based user inter­face. This means, that the following features are not supported:

• Windows and window-based commands
• Menus
• The ability to define function keys
• Extended line-editing

Chapter 3, Appendix A and Appendix B of the DBUG reference manual do not apply to this version.
The following commands, which are part of the multi-window user interface, are not supported:

ADDMENU
DELMENU
KDEFINE
KRESET
WDELETE
WDISPLAY
WGO
WMOVE
WNEXT
WPOP
WPUSH
WRESET
WSCROLL

7.1.10 DBUG Initial Commands File
The default initialization file name of DBUG is called dbug.ini. When invoked without the
-noc option, DBUG will look for this file in the current directory. If it cannot find it, DBUG will look for a file of the same name in the h o me directory. HOME is an environment vari­able that you can define.

25

7.1.11 DRUG Log File
When you leave DBUG with the quit and save command, a file is created with the default name dbug. sav.

7.1.12 DBUG Serial Communication
WTien serial communication is used, the port name is either coml or com2 .

7.1.13 MINSTALL
The m i n s t a l l utility is not supported in this release.

7.2 CONFIGURING GNX TOOLS MEMORY REQUIREMENTS
The cfig386 utility is shipped together with the NSW-ASMC-4-BOS release.
An example of the use of this utility is the resolution of memory problems, encountered
during assembly time, with a PC with more than 4 MB of main memory. Invoke cf ig3 86
as follows:

CFIG386 -clear nasm_r.exe
CFIG386 nasm_r.exe -MAP 601000h -MAXXMSMEM 601000h

For further information on cfig386, refer to the switches.doc file in the GNX main direc­
tory, supplied with this package.

26

7.3 DBUG AND THE HP64772/8/9 EMULATOR COMMUNICATION PROBLEMS AND WORKAROUNDS
Some target system configurations may not be completely supported by the DBUG and
HP64772/8/9 Emulator default settings.

• Problem: DBUG issues the following warning message when communication with
the emulator is attempted:

cannot enable (software) breakpoint feature

• Explanation: In order to enable software breakpoints, DBUG configures the emula­tor for the foreground monitor (see the HP64772/ 8/9 Emulator Manual). The emula­
tor's firmware then modifies the breakpoint and trace entries in the interrupt dispatch
table.If the firmware is not able to modify these entries (i.e., the dispatch table is allocated
in ROM), the warning message will be issued.

• Workaround: Allocate the interrupt dispatch table in RAM by mapping the relevant
memory segment to the emulation memory. Then enable the (software) breakpoints. For example, if the dispatch table is allocated at address 0x4000, enter the following commands:

(dbug) config mon bg
(dbug) map 0x4000..0x4fff
(dbug) config mon fg,0x30000

• Problem: DBUG issues the following warning message when communication with the emulator is attempted:
cannot configure fg monitor at address 0x30000

• Explanation: As part of the initialization process, DBUG configures the emulator's
foreground monitor at address 0x3000 0. If this address is already mapped (e.g. from a previous debugging session), DBUG will fail to configure the monitor.

• Workaround: Print the address mapping (using the map command). Then, either re­move the map term containing the address 0x3 00 00 (unmap command) or manually
configure the foreground monitor to an available address by entering the command:

(dbug) config mon fg,0x40000

27

8. LIFE SUPPORT POLICY

NATIONAL SEMICONDUCTOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUC­TOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for sur­gical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling,

can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure

to perform can be reasonably expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.

28

w

s->

Series 32000®
GNX — Version 4.4

C Optimizing Compiler
Reference Manual

Change Package

NSC Publication Number 424010516-404

Series 32000®
GNX — Version 4.4

C Optimizing Compiler
Reference Manual

Customer Order Number 424010516-004
June 1992

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES
4.0 June 1990 First Release. Support for the Application

Specific Instruction Set (ASIS). Function
prototypes. Introduction of a source level
profiler. Support for the Series 32000/EP.

4.1 September 1990 Bug fixing
4.2 February 1991 Bug fixing
4.3 August 1991 Bug fixing.
4.4 June 1992 Release for MS-DOS hosts

PREFACE

This is a reference manual for National Semiconductor Corporation’s GNX—Version 4
C optimizing compiler. The C optimizing compiler generates high-quality code for the
Series 32000® architecture, therefore improving the performance of the Series 32000
system.
The main difference between the C optimizing compiler and other compilers is the
advanced optimizing component of the compiler. The optimizer uses advanced optimi­
zation techniques to improve speed or save space. This reference manual provides
guidelines for using the optimizer as well as a discussion of the compiler’s optimization
techniques. In addition, this reference manual provides information regarding the
compilation process, extensions to the C programming language, and implementation
issues.
This manual corresponds to the GNX—Version 4 C compiler.
A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.
The information contained in this manual is for reference only and is subject to change
without notice.
No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

GENIX, GNX, ISE, ISE16, ISE32 and SYS32 are trademarks of National Semiconductor Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION... 1-1
1.2 INTENDED AUDIENCE... 1-2
1.3 FEATURES AND SUPPORTED LANGUAGE EXTENSIONS . . 1-3

1.3.1 Compiler Features ... 1-3
1.3.2 Supported C Language Features.................................... 1-3

1.4 DOCUMENTATION CONVENTIONS.. 1-4
1.4.1 General Conventions.. 1-4
1.4.2 Conventions in Syntax Descriptions.............................. 1-4
1.4.3 Example Conventions.. 1-5

1.5 Incompatibilities With GNX C Compiler Version 3 1-5
Chapter 2 COMPILATION PROCESS

2.1 INTRODUCTION.. 2-1
2.2 COMPILER STRUCTURE .. 2-1
2.3 COMMAND LINE OPTIONS... 2-2

2.3.1 UNIX and MS-DOS Compilation Options........................ 2-2
2.3.2 MS-DOS Additional Compilation O ptions..................... 2-9
2.3.3 VMS Compilation Q ualifiers.. 2-9

2.4 TARGET MACHINE SPECIFICATION....................................... 2-14
2.5 RUN-TIME CHECKS... 2-15

2.5.1 Parameter C heck .. 2-16
2.5.2 Array C h eck s... 2-16
2.5.3 NIL_POINTER Checks... 2-17

2.6 FLOATING-POINT EMULATION.. 2-18
2.6.1 Floating-point Emulation — Native Configuration . . . 2-18
2.6.2 Floating-point Emulation — Cross-Configuration. . . . 2-18
2.6.3 Floating-Point Emulation — VAX/VMS System............ 2-19

2.7 ENVIRONMENT VARIABLES (FOR UNIX AND MS-DOS) . . . 2-19
Chapter 3 EXTENSIONS TO THE C LANGUAGE

3.1 INTRODUCTION.. 3-1
3.2 ANSI FEATURES.. 3-1

3.2.1 Function Prototypes... 3-1
3.2.2 Volatile and Const Qualifiers.. 3-2
3.2.3 Void Data T y p e ... 3-2

CO NTENTS v

3.2.4 Signed Keyword... 3-2
3.2.5 The #pragma D irective... 3-2
3.2.6 Single-Precision Floating Constants.............................. 3-2
3.2.7 Unsigned Constants 3-3
3.2.8 Enumerated T y p e s ... 3-3
3.2.9 Structure H andling... 3-3
3.2.10 Concatenation of Adjacent String Literals..................... 3-3
3.2.11 Obsolesce of the Old Fashioned Compound Assignment 3-4
3.2.12 Obsolesce of the Old Fashioned Initialization............... 3-4

3.3 EMBEDDED SUPPORT EXTENSIONS....................................... 3-4
3.3.1 Interrupt/Trap Routines Support.................................... 3-4
3.3.2 Asm Keyword.. 3-6
3.3.3 Intrinsic Routines.. 3-7

3.4 OTHER EXTENSIONS.. 3-7
3.4.1 $ Sign in Identifiers... 3-7
3.4.2 B itfields.. 3-7
3.4.3 Ident Preprocessor Command 3-7

Chapter 4 IMPLEMENTATION ISSUES
4.1 INTRODUCTION.. 4-1
4.2 IMPLEMENTATION ASPECTS... 4-1

4.2.1 Memory Representation .. 4-1
4.2.2 External L inkage.. 4-2
4.2.3 Types and Conversions... 4-2
4.2.4 Variable and Structure Alignment................................. 4-2
4.2.5 Structure Returning Functions....................................... 4-8
4.2.6 Calling Sequence.. 4-8
4.2.7 Mixed-Language Programming 4-8
4.2.8 Order of Evaluation... 4-9
4.2.9 Order of Allocation of M em ory....................................... 4-9
4.2.10 Register Variables.. 4-9
4.2.11 Floating-Point A rithm etic ... 4-10

4.3 UNDEFINED BEHAVIOR.. 4-10
Chapter 5 OPTIMIZATION TECHNIQUES

5.1 INTRODUCTION... 5-1
5.2 THE OPTIMIZER.. 5-2
5.3 THE CODE GENERATOR.. 5-9
5.4 MEMORY LAYOUT OPTIMIZATIONS 5-10
5.5 RUNTIME FEEDBACK.. 5-11

vi CONTENTS

Chapter 6 GUIDELINES ON USING THE OPTIMIZER
6.1 INTRODUCTION.. 6-1
6.2 OPTIMIZATION FLAGS ... 6-1

6.2.1 Optimization Options —UNIX and MS-DOS Systems . . 6-3
6.2.2 Optimization Options on the Command Line — VMS

Systems... 6-3
6.2.3 Changing Default Optimization Options........................ 6-4

6.3 PORTING EXISTING C PROGRAMS.. 6-6
6.3.1 Undetected Program E r r o r s .. 6-6
6.3.2 Compiling System Code... 6-7
6.3.3 Timing A ssum ptions.. 6-8
6.3.4 Low-Level Interface.. 6-8
6.3.5 Using Nonstandard Library R outines........................... 6-8
6.3.6 Reliance on Naive Algebraic Relations........................... 6-9

6.4 DEBUGGING OF OPTIMIZED CODE.. 6-10
6.5 IMPROVED ANNOTATION ... 6-11
6.6 ADDITIONAL GUIDELINES FOR IMPROVING CODE

QUALITY... 6-12
6.6.1 Static Functions... 6-12
6.6.2 Integer V ariables.. 6-12
6.6.3 Local V ariab les... 6-12
6.6.4 Floating-Point Computations.. 6-13
6.6.5 Pointer U sag e ... 6-13
6.6.6 Asm Statements... 6-15
6.6.7 Register A llocation... 6-16
6.6.8 setjm pO .. 6-16
6.6.9 Optimizing for S p ace .. 6-17
6.6.10 Using/NOOPT (-Oo) option... 6-17
6.6.11 Runtime Feedback Optimization.................................... 6-17

6.7 COMPILATION TIME REQUIREMENTS.................................... 6-18
Chapter 7 PROFILE INFORMATION

7.1 INTRODUCTION.. 7-1
7.2 GATHERING PROFILE INFORMATION.................................... 7-2

7.2.1 The Profile Information... 7-2
7.2.2 Code Compilation.. 7-2
7.2.3 P g e n .. 7-3
7.2.4 The PIT F ile .. 7-3
7.2.5 The File p fb _ e x it . o (p fb _ ex it. obj) 7-3
7.2.6 Compilation in the UNIX and MS-DOS Environments . 7-4
7.2.7 Compilation in the VMS Environment........................... 7-4
7.2.8 Code Execution ... 7-5
7.2.9 Disabling Profile Information Accumulation 7-5

CO NTENTS vii

7.2.10 Redefining Standard l ib e Symbols.............................. 7-5
7.2.11 Execution Time Considerations 7-6
7.2.12 Space Considerations.. 7-6

7.3 SPROF - THE GNX SOURCE PROFILER.................................... 7-7
7.3.1 Example - A Factorial P ro g ra m 7-7
7.3.2 Running SPROF.. 7-8
7.3.3 SPROF Invocation ... 7-9
7.3.4 Counts and Basic B locks.. 7-10

7.4 RUNTIME FEEDBACK OPTIMIZATION.................................... 7-11
7.4.1 Profile Information G athering 7-11
7.4.2 Runtime Feedback Compilation.................................... 7-11

Chapter 8 INTRINSIC FUNCTIONS
8.1 INTRODUCTION.. 8-1

8.1.1 Using Intrinsic Functions.. 8-1
8.2 General Series 32000 Intrinsic F unctions.................................... 8-2

8.2.1 Single Bit Instructions... 8-4
8.2.2 _ffs (Find First S e t) ... 8-6
8.2.3 _exti (Extract bit-field)... 8-7
8.2.4 _ins (Insert B it-field).. 8-9
8.2.5 _cvtp (Convert to Bit Pointer) 8-11
8.2.6 _roti (Rotate) .. 8-12
8.2.7 _movsi (Move S tring).. 8-13
8.2.8 _movst (Move String Translating Bytes)........................ 8-14
8.2.9 Load and Store of Processor Registers........................... 8-16
8.2.10 Bit Operations on the P S R ... 8-17
8.2.11 Set Configuration R egister... 8-18
8.2.12 Trap Activating Instructions.. 8-19
8.2.13 abs (Absolute V a lu e) .. 8-20

8.3 CG-Core Intrinsic Functions ... 8-21
8.3.1 _extblt (External Bit Aligned Block Transfer)............... 8-23
8.3.2 BITBLT instructions.. 8-25
8.3.3 _bitwt (Bit Aligned Word Transfer) 8-29
8.3.4 _movmp (Move Multiple P a t te r n) 8-30
8.3.5 _movmp_upd (Move Multiple Pattern With Update) . . 8-31
8.3.6 _sbits (Set Bit String).. 8-32
8.3.7 _sbitps (Set Bit Perpendicular S tring)........................... 8-33
8.3.8 _tbits (Test Bit S tr in g) ... 8-34

8.4 NS32GX320 Intrinsic Functions ... 8-36
8.4.1 NS32GX320 typedefs.. 8-37
8.4.2 _mulwd (Multiply Word to Double) 8-38
8.4.3 _cmuld (Complex Multiply Double) 8-39
8.4.4 _cmacd (Complex Multiply and Accumulate Double) . . 8-40

viii CONTENTS

8.4.5 _mactd (Multiply and Accumulate Twice Double) 8-41
Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS

A.l INTRODUCTION.. A-l
A. 2 CALLING CONVENTION ELEMENTS.. A-l

Appendix B MIXED-LANGUAGE PROGRAMMING
B. l INTRODUCTION.. B-l

B.1.1 Writing Mixed-Language P rogram s............................... B-l
B.1.2 Compiling Mixed-Language Programs............................ B-5
B.1.3 Compilation on UNIX Operating S y s te m s...................... B-6
B.1.4 Compilation on VMS Operating S y stem s...................... B-7

B.2 COMPILING THE MIXED-LANGUAGE EXAMPLE................... B-7
B.2.1 Compiling the Example on a UNIX System...................... B-7
B. 2.2 Compiling the Example on a VMS System B-8

B. 3 PROGRAM MODULE LISTINGS ... B-8
Appendix C ERROR DIAGNOSTICS

C. l INTRODUCTION.. C-l
C. 2 ERROR MESSAGES... C-l

C. 2.1 Error Messages Form at.. C-l
C.2.2 System E rro rs ... C-2
C.2.3 Limitation E rro rs ... C-2
C.2.4 Syntax E rro rs ... C-4
C.2.5 Severe E r ro r s ... C-5
C.2.6 Caution Errors .. C-6
C.2.7 Warnings .. C-6

Appendix D COMPILER OPTIONS
D. l INTRODUCTION.. D-l

Appendix E EMBEDDED PROGRAMMING HINTS
E. l INTRODUCTION.. E-l
E.2 VOLATILE AND CONST.. E-l

E.2.1 Const Type Q ualifier... E-l
E.2.2 Volatile Type q u a lif ie r.. E-2
E.2.3 Memory Allocation.. E-4
E.2.4 Initialized C V ariab les.. E-4
E.2.5 Programming Memory Mapped Devices......................... E-5

E.3 ASM STATEMENTS... E-5
E.4 EXAMPLES OF PROGRAMMING WITH INTRINSIC

FUNCTIONS... E-6

CONTENTS ix

E.4.1 NS32CG16 bit instructions.. E-6
E.4.2 NSGX320 specific instructions.. E-10

E.5 PROGRAMMING TRAP/INTERRUPT ROUTINES..................... E -ll
Appendix F GLOSSARY
FIGURES
Figure 4-1. Bitfield Padding... 4-6
Figure 4-2. Alignment on B itfie lds... 4-6
Figure 5-1. Relationship Between Various Optimizations............................ 5-3
Figure 5-2. Flow G ra p h ... 5-4
Figure 5-3. Example of Loop Unrolling.. 5-5
Figure 5-4. Example of Partial Redundancy Elim ination............................ 5-7
Figure 7-1. Example of sp ro f o u tp u t .. 7-7
Figure 7-2. sp ro f Data Flow D escription.. 7-8
Figure B-l. Cross-Language P airs... B-2
Figure E-l. Example of Linker Directive F ile... E-4
Figure E-2. The Im age.. E-7
Figure E-3. The Image with the Reversed Shape... E-8

TABLES
Table 2-1. Filename Conventions.. 2-3
Table 2-2. Target Selection Param eters... 2-14
Table 2-3. Run-time Check F la g s .. 2-15
Table 4-1. Variable Alignment.. 4-3
Table 6-1. Optimization Options... 6-2
Table 6-2. Changing Default Optimization Options 6-5
Table 6-3. Recognized Library Routines... 6-9
Table 8-1. Effect of tbits on PSR L and F flags.. 8-35
Table B-l. Compilers and their Associated L ibraries.................................. B-6
Table D-l. UNIX and MS-DOS Operating System O p tio n s D-2
Table D-2. VMS Operating System O ptions... D-4

x CONTENTS

Table D-3. Options Passed to the Preprocessor — UNIX and MS-DOS
S ystem s.. D-5

Table D-4. Options Passed to the Preprocessor — VMS Systems................ D-6
Table D-5. Options Recognized and Passed to the Linker............................ D-6

INDEX

CO NTENTS xi

Chapter 1
OVERVIEW

1.1 INTRODUCTION
This manual describes National Semiconductor’s GNX—Version 4 C Optimizing Com­
piler. The compiler is one of a family of compatible optimizing compilers for the
Series 32000 family of microprocessors.* The GNX—Version 4 C Compiler replaces
and makes obsoletes the previous GNX—Version 3 C Compiler. It implements the C
language as described in C Programming Language by Kemighan and Ritchie,
together with most of the important features in the ANSI C standard like function pro­
totypes, const and volatile type qualifiers, and the void data type (see Section 1.3.1).
The compiler is fully compatible with the System V C compiler, a compiler derived from
the portable C compiler (pcc).
In addition, the GNX—Version 4 C Optimizing Compiler includes important exten­
sions for programming embedded applications like ASIS (Application Specific Instruc­
tions) support, interrupt/trap handling in C, and asm statement. The compiler is
available as a cross-support compiler running on MS-DOS® VMS™ and UNIX® operat­
ing systems as well as a native compiler running on Series 32000 operating systems
derived from UNIX System V, Release 3. Additional information on other tools in the
Series 32000 family can be found in the GNX — Version 4 Commands and Operations
Manual.
This manual is organized as follows:

• Introduction (Chapter 1)
• Compilation Process (Chapter 2)
• Extensions to the C language(Chapter 3)
• Implementation Issues (Chapter 4)
• Optimization Techniques (Chapter 5)
• Guidelines on Using the Optimizer (Chapter 6)
• Profile Information (Chapter 7)
• Intrinsic Routines (Chapter 8)

* At this writing, the family consists of a C Optimizing Compiler, Pascal Optimizing Compiler, and FORTRAN 77 Optimizing Compiler.

Rev 4.4 OVERVIEW 1-1

• Series 32000 Calling Standard Conventions (Appendix A)
• Mixed-Language Programming (Appendix B)
• Error Messages (Appendix C)
• Compiler Options (Appendix D)
• Embedded Programming Hints (Appendix E)
• Glossary (Appendix F)

1.2 INTENDED AUDIENCE
This manual is for experienced C programmers. The information provided covers com­
piler options, extensions to the standard C programming language, and implementa­
tion issues. Knowledge of optimization techniques is useful but not essential; Chapter
5 provides an overview of optimization techniques used by the optimizer. And Chapter
6 provides further guidelines to help the programmer avoid problems that can occur
when using the optimizer.
Recommended C reference books include:

ANSI C standard (ANSI X3.159-1989).
Harbison, Samuel and Steele, Guy. C, A Reference Manual, 2nd. ed., Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1984.
Kemighan, Brian and Ritchie, Dennis. The C Programming Language, 2nd, ed.,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1989.

1-2 OVERVIEW

1.3 FEATURES AND SUPPORTED LANGUAGE EXTENSIONS

1.3.1 Compiler Features
The following are the main features of the C Optimizing Compiler:

• Accepts most ANSI C features.
• pcc compatible.
• Allows for use of Application Specific Instructions in C via intrinsic routines.
• Allows for programming of interrupt/trap handlers in C.
• Optimizations can be tuned to either improve speed or save space.
• Optimization level is controlled by the user.
• Code can be generated that is tuned to the specific target system.
• Full support of mixed-language programming.
• User controlled alignment of variables and structure members.
• Improved structure handling.
• Assembly output can be annotated with source lines.
• Fast compilation mode.
• Advanced error handling, recovers from simple syntax errors.
• Runtime checks are available.
• Supports sprof - the GNX source profiler.

1.3.2 Supported C Language Features
The compiler implements the full C language as defined in Appendix A of C Program­
ming Language by Kernighan and Ritchie. In addition most of the ANSI C standard
features and important extensions for embedded programming are supported. The fol­
lowing extensions are supported:

• ANSI C features:
— const for defining read-only entities.
— volatile for sensitive variables.
— Function prototypes.
— Signed keyword.
— pragma preprocessor command (specifically a pragma that enables marking a

trap/interrupt routine).
— void data type.

OVERVIEW 1-3

— Structures may be assigned, passed as arguments and returned from func­
tions.

— Initialization of automatic aggregated types.
— Structure/union member names need not be globally unique.
— Structure and union size is not limited.
— Unsigned constants (to save run-time conversions).
— Single-precision floating constants (to save run-time conversions).
— Enumeration datatypes can be used as “int”.
— Unsigned and signed bitfields.
All of the above extensions are discussed in Chapter 3.

1.4 DOCUMENTATION CONVENTIONS
The following documentation conventions are used in text, syntax descriptions, and
examples in describing commands and parameters.

1.4.1 General Conventions
Nonprinting characters are indicated by enclosing a name for the character in angle
brackets < >. For example, < CR> indicates the RETURN key, < ctrl/B> indicates the
character input by simultaneously pressing the control key and the B key.
Constant-width type is used within text for filenames, directories, command names and
program listings; it is also used to highlight individual numbers and letters. For exam­
ple,

the C preprocessor, cpp, resides in the GNXDIR/lib directory.

1.4.2 Conventions in Syntax Descriptions
The following conventions are used in syntax descriptions:

Constant-width boldface type indicates actual user input.
Italics indicate user-supplied items. The italicized word is a generic term
for the actual operand that the user enters. For example,

cc [[option] ... [filename]...]...
Spaces or blanks, when present, are significant; they must be entered as
shown. Multiple blanks or horizontal tabs may be used in place of a single
blank.

1-4 OVERVIEW

{ } Large braces enclose two or more items of which one, and only one,
must be used. The items are separated from each other by a logical
OR sign “ |
Large brackets enclose optional item(s).
Logical OR sign separates items of which one, and only one, may be
used.

... Three consecutive periods indicate optional repetition of the preced­
ing item(s). If a group of items can be repeated, the group is
enclosed in large parentheses “().”

,,, Three consecutive commas indicate optional repetition of the preced­
ing item. Items must be separated by commas. If a group of items
can be repeated, the group is enclosed in large parentheses “().”

() Large parentheses enclose items which need to be grouped together
for optional repetition. If three consecutive commas or periods follow
an item, only that item may be repeated. The parentheses indicate
that the group may be repeated.

i_ i Indicates a space. u is only used to indicate a specific number of
required spaces.

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets, parentheses, or braces which must be entered, are smaller
than the symbols used to describe the syntax. (Compare user-entered [],
with [] which show optional items.)

1.4.3 Example Conventions
In interactive examples where both user input and system responses are shown, the
machine output is in constant-width regular type; user-entered input is in constant-
width boldface type. Output from the machine which varies (e.g. , the date) is in italic
type. For example,

(dbug) < CR>
Breakpoint 2 reached at filename _main: .3
.3 printf("hello\r\n");

1.5 Incompatibilities With GNX C Compiler Version 3
The incompatibilities with the GNX-Version 3 C compiler are:
1. signed keyword added.

GNX version 4 is extended to support the ANSI C signed type specifier. Pro­
grams using this keyword in another context (i.e. as identifier or typedef names)
are not legal and will be considered an error.

OVERVIEW 1-5

Example:
float signed;

The above example defines an identifier whose name is signed and will not pass
compilation.

2. Const and volatile type qualifiers fully suported.
The GNX version 3 C compiler includes a partial implementation of the ANSI C
const and volatile type qualifiers. In GNX version 4 C compiler const and
volatile are fully implemented as defined in ANSI C standard. Programs
which rely on version 3 partial implementation may compile differently in
GNX—Version 4 C .

3. -N(/TABLES on VMS) was deleted.
The compiler internal tables are allocated dynamically. Hence the -N
(/ TABLE_S IZE on VMS) no longer has any meaning. The compiler will silently
ignore this option when used.

4. Different organization of the stack.
The compiler uses a new and more efficient organization of the stack frame. Pro­
grams that rely on a certain stack frame organization may not function correctly.

1-6 OVERVIEW

Chapter 2
COMPILATION PROCESS

2.1 INTRODUCTION
The GNX—Version 4 C Compiler is a modular language processor consisting of five
separate programs. This chapter describes the five programs, the GNX—Version 4 C
Compiler invocation, options available to the user, and file generation during compila­
tion.

2.2 COMPILER STRUCTURE
The GNX—Version 4 C Compiler’s five programs are:

• Driver
• Macro preprocessor
• C language parser (front end)
• Optimizer
• Code generator

The driver is a program that parses and interprets the command line and then sequen­
tially calls each of the other programs, depending on its input programs and the com­
mand line options.
The Macro preprocessor is the C preprocessor, cpp. Its input is a program file option­
ally containing preprocessing commands.
The C language parser is the compiler’s front end, cc_f e. Its input is a C program.
Its output is the same program in a proprietary intermediate form.*
The optimizer, opt, is a true global, language-independent optimizer that uses
advanced optimization techniques to improve the code. Both its input and output are
in the same intermediate form. See Chapter 5 for more detailed information.

* The intermediate form is language-independent. This allows the same optimizer and code generator
to be used by all National Semiconductor GNX — Version 4 Compilers, i.e., the FORTRAN 77
Compiler, the Pascal Compiler, and the C Compiler.

COM PILATION PROCESS 2-1

The Series 32000 code generator, cgen_cof f, generates an assembly program from a
program in the intermediate form.
The assembly program produced by the code generator must be assembled by the
Series 32000 assembler to produce an object code program. The assembler is automati­
cally called by the driver program.
The user produces an executable program by running the Series 32000 linker on one or
more object code programs with run-time bbrary archives. On UNIX and MS-DOS sys­
tems the linker is automatically called by the driver program.
On VMS systems it must be called separately (for further details on invocation see the
GNX Commands and Operations Manual).

2.3 COMMAND LINE OPTIONS
The GNX—Version 4 C Compiler operation is controlled by a large number of compila­
tion parameters. Many of these parameters, such as the target system specification
can be permanently set by means of the GNX Target Setup (GTS) facility. For details
on how to use GTS, see the Series 32000 GNX — Version 4 Commands and Operations
manual. All compilation parameters can be specified as command line options which
override any previously existing default values.
Command line options and default values are the same for all supported host systems,
but their syntax varies from host to host. Three host systems are currently supported:
the UNIX operating system (in both cross-support and native variants), the MS-DOS
operating system and the VMS operating system (cross-support only). The next three
sections provide details on the various compilation parameters and their syntax on
these host systems. The tables in Appendix D summarize the various compilation
options of the operating systems and can be used as a quick reference.

2.3.1 UNIX and MS-DOS Compilation Options
The invocation syntax of the GNX—Version 4 C Compiler under UNIX and MS-DOS is:

cc [[option]... [filename]...]... (native configuration)
nmcc [[option]... [filename]...]... (cross-supportconfiguration)

The compiler accepts a variable number of file arguments and compilation options. It
produces an executable file, object file(s), or assembly file(s), according to the options
specified. The files compiled are normally C program sources, but other types of files
are also recognized. A file type is recognized by its suffix. A compilation option is
recognized by the UNIX convention of a minus-sign prefix.

2-2 COMPILATION PROCESS Rev 4.4

Filename Conventions
Files are identified by the compiler according to their suffix. Files with names ending
with . c or . i are C source programs.
Files ending with . c, pass through the macro preprocessor (cpp) before compilation.
Files ending with . i compile directly and assemble to produce object programs left in
files whose names are those of the source files with . o substituted for the given suffix.
The intermediate . o file is deleted if a C program consisting of a single file is compiled
and linked at the same time.
In support of mixed-language programming, the compiler also recognizes and compiles
appropriate files written in other programming languages. Files with a . s suffix are
assembly source programs and may be assembled (to produce . o files) and linked. Pas­
cal and FORTRAN 77 source files are also recognized, and compile appropriately if
your system includes the National Semiconductor GNX — Version 4 Compiler for those
languages. The suffixes for these files are listed in Table 2-1. See Appendix B for
details on mixed-language programming.
All other files (normally . o or . a files) are compatible object programs or archives of
object programs, typically produced by previous runs of the GNX—Version 4 C Com­
piler, and pass directly to the linker. The object files link into one executable file with
the default name a32 . out (or a . out in a native-support environment).

Table 2-1. Filename Conventions

FILE NAME
SUFFIX

FILE TYPE

.c C source file
.i Preprocessed C source file

.f, .for FORTRAN 77 source file
,F, .FOR FORTRAN 77 source with cpp directives
.p, .pas Pascal source file
.P, .PAS Pascal source with cpp directives

.s Assembly source file
other (.0 , .a, etc.) Object code or library-archive file

COM PILATION PROCESS 2-3

Compiler Options
The following is a list of the compilation options which may be specified on the invoca­
tion line.* The tables in Appendix D summarize the various compilation options and
can be used as a quick reference.

- 0 (PERFORMS OPTIMIZATIONS)
-F flags (SPECIFIES OPTIMIZATION FLAGS)
-0flags (PERFORMS OPTIMIZATIONS ACCORDING TO FLAGS)

The - 0 option directs the GNX—Version 4 C Compiler to perform glo­
bal optimizations. The optimizer uses a variety of optimization tech­
niques which ensure the fastest possible code. In certain cases, such as
when code density is of greater importance than code speed, it is neces­
sary to specify optimizations. Using the -F option with the optimiza­
tion flags listed in Chapter 6 sets the selected optimization flags.
Using the -F option by itself will do nothing. -Oflags is a shorthand
notation for - 0 -F flags. A detailed discussion of optimization tech­
niques is found in Chapter 5 and Chapter 6.

-Q (COMPILES QUICK, NO CODE)
This option allows for a quick error-checking compilation. No code is
generated.

- a (GENERATES RUN-TIME CHECKS)
This option controls the generation of code that checks for run-time
errors. See Section 2.5 for more details.

- a flags (GENERATES RUN-TIME CHECKS)
This option controls the generation of code for selective run-time error
checks. See Section 2.5 for more details.

-g (PREPARES SYMBOLIC DEBUGGING INFORMATION)
The - g option instructs the GNX—Version 4 C Compiler to prepare
symbolic debugging information for symbolic debuggers, such as d b u g .
See the discussion on debugging of optimized code in Section 6.4.

-P (PREPARES PROFILE INFORMATION FOR UNIX STANDARD
PROFILER)
This option prepares profile information for unix standard profiler.

-B [filename] (PREPARES PROFILE INFORMATION FOR GNX SOURCE PRO­
FILER)
This option instructs the compiler to add special code for profile infor­
mation gathering by GNX source profiler. See Chapter 7 for more

* The GNX—Version 4 C compiler supports the System V Interface Definition (SVID) for C compilers. Where possible, space is allowed between an option and its following flags, i.e., -oout is the same as
- o out, and - J 2 is the same as - J 2. Similarly, -VHOST is equivalent to -D HOST. The notation in this section follows traditional UNIX conventions.

2-4 COMPILATION PROCESS

details.

S

n

C

R

o out

(COMPILES BUT DOES NOT LINK)
The -c option directs the GNX—Version 4 C Compiler to perform the
compilation process up to, but not including, linking. Output is left in
object files whose names end with . o. This option is useful when com­
piling only a portion of a program’s modules. For example,

cc -c sample.c

creates the file sample. o. No executable file is created.
(COMPILES AND LEAVES ASSEMBLY FILES)
The -S option directs the GNX—Version 4 C Compiler to terminate
the compilation process before assembly. The assembly output is left in
files whose names are those of the source, with . s substituted for the
original suffix. For example,

cc -S sample.c utils.c

creates the files sample. s and utils . s. No executable or object file
is created.
(EMBEDS C SOURCE LINES AS COMMENTS IN ASSEMBLY)
This option puts the C source lines into the assembly output file as
comments. If the optimizer is enabled, explanatory optimizer com­
ments are also put into the assembly output file. Note that the -n
option is useful only in conjunction with the -S option.

(LEAVES COMMENTS IN)
The preprocessor normally removes the comments from its output. The
-C option prevents this. This option can be useful when cpp’s output
must be examined or when the -n option is used and C comments are
required in the assembly file.
(PUTS LITERAL STRINGS IN READ-ONLY MEMORY)
C literal strings are, by default, writable and are thus allocated in the
writable data space. The -R option allocates literal strings in a read­
only area.

(RENAMES THE OUTPUT FILE)
The -o option redirects the output file from the compilation process to
a file named out. For example,

cc sample.c utils.c -o sample

generates the executable file sample from the two source files, and
cc -S sample.c -o new_sample.s

COM PILATION PROCESS 2-5

generates the assembly file new_sample. s.
-Jwidth (ALIGNMENT WITHIN STRUCTURES)

This option allows the user to set structure-member alignment on
bytes (width = 1), words (width = 2), or double-words (width = 4).
Default value for width is 4 (double-word-aligned).

-w (NO WARNING DIAGNOSTICS)
The GNX—Version 4 C Optimizing Compiler normally prints warn­
ings regarding inconsistencies in the input program. The -w option
suppresses these warning diagnostics. See Appendix C for a complete
list of the warning diagnostics.

-w6 6 (SUPPRESSES FORTRAN 66 WARNINGS)
This is only useful when compiling FORTRAN 77 programs.

-T (UNDEFINED VARIABLE TYPE)
This is only useful when compiling FORTRAN 77 programs.

-A (ALLOCATES VARIABLES AS STANDARD)
This option directs the compiler to adhere to the ANSI C standard,
with respect to the declaration and allocation of global variables. When
this option is used, there must be exactly one declaration of each global
variable without the keyword extern within the entire program. This
declaration is considered the definition of the variable.

-m (USES THE m4 PREPROCESSOR)
With this option, the m4 preprocessor is used on assembly and FOR­
TRAN 77 files before assembling and compiling them.

-d (CASE SENSITIVITY)
This is only useful when compiling Pascal and FORTRAN 77 pro­
grams.

-N [parameter] [size] (SET INTERNAL TABLE SIZE)
This option is only useful for FORTRAN programs.

-v (VERBOSE)
This option lists the subprograms of the GNX—Version 4 C Compiler
as they are executed by the driver program.

-vn (SHOWS BUT DOES NOT ACTUALLY EXECUTE)
This option lists the compiler subprograms that are called by the
compiler’s driver program, without actually executing them. This
option can be used to verify how other compiler options work.

-Kparameter (SETS TARGET CPU, FPU, OR BUSWIDTH)
The -K option allows the user to “time” the GNX—Version 4 C Com­
piler by specifying the CPU, the FPU (or absence of), and/or buswidth
of the target system. See Sections 2.4 and 2.6 for more details.

- zc (USES ALTERNATIVE LIBRARY)
This option directs the compiler to link an alternative library and

2-6 COM PILATION PROCESS

initialization file, determined by the character which follows the option. For example,
c c -Z2 u n i x . c

links unix. o with c r t2 .o a n d lib2.a.
-x (GENERATES MODULAR CODE)This option directs the compiler to generate code that conforms to the Series 32000 architectural feature of modularity (which allows the modular use of external references). For further information see the

Series 32000 GNX — Version 4 Language Tools Technical Notes and
the Series 32000 Programmer’s Reference Manual.

- f (FLOATING-POINT EMULATION)This option tells the compiler driver that there is no FPU on the target
and floating-point emulation is desired. See Section 2.6 for a discus­sion of this option and floating-point emulation.

The compiler accepts the following options and passes them to the C preprocessor.
-D name[=def] (DEFINES)

The -D switch defines name equal to def to the preprocessor. If no explicit value is given, name is defined as having the value 1. The use
of this option is equivalent to putting a “#define name def’ at the
beginning of each C source file.
For example:

c c -DHOST=VAX s a m p le .c

works as if the following define was at the head of sample. c:
d e f i n e HOST VAX

-E (RUNS cpp ONLY)
This option terminates the compilation after preprocessing; only the
cpp preprocessor is invoked, and its output is sent to the standard out­put, stdout.

- 1dir (SPECIFIES DIRECTORY FOR INCLUDED FILES)
This option tells to use the specified directory as the default directory for included files. Include files that are called using double quotes, e.g.,
#include "filename'', are sought first in the directory of the compiled
file, then in the directories specified by -I , and finally in directories on
a standard list (/usr/include). If the user explicitly names the file
to be included by using the complete path, e.g., #include
"/a/mydir/filename", the named file is sought directly. If angle
brackets are used instead of double quotes, e.g.,
#include <filename>, the file is sought in the directories on a stan­dard list (/usr/include).

-M (RUNS cpp ONLY, GENERATES MAKEFILE DEPENDENCIES)
This option runs only the cpp macro preprocessor on the named C pro­grams, requests it to generate makefile dependencies and then sends the result to the standard output, stdout. For example:

COM PILATION PROCESS 2-7

cc -M *.c > new.makefile

runs epp on all of the C programs in the current directory and gen­
erates all makefile dependencies. These dependencies are then sent to
the file new.makefile.

-p (RUNS epp ONLY, REDIRECTS OUTPUT TO .i FILE)This option is similar to -E, except that the output of epp is sent to a file with a . i extension. For example:
c c -P s a m p le .c u t i l s . c

creates the files sample, i and u t i l s , i.
-u name (UNDEFINES)Using this option is equivalent to putting “#undef name” at the begin­

ning of each C source file.
In addition, the compiler accepts the following compiler options and passes them to the
linker. See the GNX — Version 4 Linker User’s Guide manual for details.

-v (LINKER VERSION)
- llib (SPECIFIES A PROGRAM LIBRARY)
-s (STRIPS THE EXECUTABLE FILE OF SYMBOL TABLE AND

RELOCATION BITS)
- r (RETAINS RELOCATION)
-u symname (UNDEFINES SYMBOL IN SYMBOL TABLE)
-e epname (DEFINES ENTRY POINT)
-x (NO LOCAL SYMBOLS IN OUTPUT SYMBOL TABLE)
- i (RUN-TIME INITIALIZATIONS)

The following option can be used as an “escape” to pass additional options (not recog­nized by the GNX—Version 4 C Compiler) to the C preprocessor, assembler, or linker.
-m , options (PASSES OPTIONS TO COMPILATION PHASE x)This option passes options to the C preprocessor (x = p), the assembler (x = a), or the linker (x = 1). The options must be a single argument (no

embedded space, unless quoted). For example, the command,
cc -Wl,-mmu382 sample.c

passes the option -mmu3 82 to the linker.

2-8 COMPILATION PROCESS

2.3.2 MS-DOS Additional Compilation Options
<afilename (READS COMPILATION OPTIONS FROM FILE)

The @ option directs the GNX—Version 4 C Compiler to read compila­
tion options from the named file. This option avoids the MS-DOS limi­
tation on the length of invocation lines and enables passing options of
unlimited length.

2.3.3 VMS Compilation Qualifiers
The command line invocation syntax of the GNX—Version 4 C Compiler is as follows:

nmcc [qualifier]... filename
The normal operation of the GNX—Version 4 C Compiler compiles and assembles a
file specified on the command line to create an object file. Command qualifiers (pre­
ceded by a /) are applied as necessary. Most qualifiers can be preceded by NO to
reverse their function. The usual VMS conventions regarding default filename exten­
sions, case insensitivity, qualifier syntax and abbreviation rules apply. The GNX—
Version 4 C Compiler accepts only one C source file as input and produces an object
file with optional intermediate results (such as an assembly file). If the source file has
no extension, a . C extension is assumed.
The following is a list of the compilation qualifiers which may be specified on the invo­
cation line.
The tables in Appendix D summarize the various compilation qualifiers and can be
used as a quick reference.

/ [no Job j e c t [=filename]
This qualifier directs the compiler to leave the object code in a file
named filename. If filename has no suffix, .OBJ is added as a suffix. If
filename is not specified, the object code is placed in a file with the
source’s filename, with the .OBJ suffix substituted for the original
suffix. Default of this qualifier is /OBJECT. For example,

NMCC/OBJ=NEW_UTILS.OBJ UTILS.C
compiles the file utils.c, and leaves the result in a file called
new_utils.obj.

The command:
NMCC/NOOBJ/ASM/OPT/ANNO SAMPLE.C

Rev 4.4

results in an annotated, optimized assembly translation of sam ple. c
and does not generate an object file.

COMPILATION PROCESS 2-9

The command NMCC/NOOBJ x .c results in a quick compilation of
x . c without producing any output. This is useful for error checking.

/ [no Joptim ize[={flags)]
This qualifier directs the GNX—Version 4 C Compiler to perform glo­
bal optimizations. A detailed discussion of the GNX—Version 4 C
Compiler optimization techniques is located in Chapter 5 and Chapter
6. Default is /NOOPTIMIZE.

/ [n o] c h eck
This qualifier controls the generation of code that checks for run-time
errors. Default is /NOCHECK. See Section 2.5 for more details.

/ [n o] d e b u g
The /DEBUG qualifier instructs the GNX—Version 4 C Compiler to
prepare symbolic debugging information for symbolic debuggers, such
as DBUG. See the discussion on debugging of optimized code in Section
6.4. Default is /NODEBUG.

/ [no Jg a t h e r (PREPARES PROFILE INFORMATION FOR GNX SOURCE
PROFILER)
This qualifier instructs the compiler to add special code for profile
information gathering by GNX source profiler. The default is
/NOGATHER. See Chapter 7 for more details.

/ [no]a sm [^filename]
This qualifier directs the compiler to leave the intermediate assembly
file in a file named filename. If filename has no suffix, . ASM is added
as a suffix. If filename is not given, the source filename is used substi­
tuting the .ASM suffix with the source filename’s suffix. Default of
this qualifier is /NOASM. For example,

NMCC/ASM=NEW_UTILS.ASM UTILS.C
compiles the file UTILS.C, and produces NEWJJTILS.ASM and
UTILS .OBJ.

/ [n o]a n n o t a t e
This qualifier directs the compiler to put GNX—Version 4 C source
lines as comments into the assembly output file. If the optimizer is
enabled, explanatory optimizer comments are also added into the
assembly output. Note that this qualifier is useful only in conjunction
with the /ASM qualifier. Default is /NOANNOTATE.

/ [n o] rom_ s t r i n g s
C literal strings are, by default, writable and are thus allocated in the
writable data space. This qualifier directs the compiler to put all
literal strings in read-only memory.

2-10 COMPILATION PROCESS

/A L IG N [=width]
This qualifier allows the user to set structure member alignment on
bytes (width = 1), words (width = 2), or double-words (width = 4).
Default value for width is 4 (double-word-aligned).
See Section 4.2.4 for details of the GNX—Version 4 C Compiler’s align­
ment scheme.

/ [no Jw a r n in g
The GNX—Version 4 C Compiler prints warnings regarding incon­
sistencies found in the input program. The /NOWARNING qualifier
suppresses these warning diagnostics. Default is /WARNING. See
Appendix C for details on warning diagnostics.

/ [NO]STANDARD
This qualifier directs the compiler to adhere to the draft-proposed
ANSI C standard, with respect to the declaration and allocation of glo­
bal variables. When /STANDARD is used, there must be exactly only
one declaration of each global variable without the keyword extern
within the entire program. This declaration is considered the
“definition” of the variable. Default is /NOSTANDARD.

/ t a b l e _ s i z e = (t a b l e _ n a m e = s i z e [,...])
This option is only useful for compiling FORTRAN programs.

/ [no Jv e r b o s e
This qualifier lists the parts of the GNX—Version 4 C Compiler as
they are called by the driver program. Default is /NOVERBOSE.

/ [no]v n
With this qualifier, the compiler lists the subprograms that are called
by the driver program, without actually executing them. This qualifier
can be used to verify how the other qualifiers work. Default is /NOVN.

/TARGET= (CPTJ=cpil, FPTJ=fpU, BUSWIDTH=6us)
The /TARGET qualifier allows the user to “time” the GNX—Version 4
C Compiler by specifying the CPU, the FPU (or absence of), and/or
buswidth of the target system. See Sections 2.4 and 2.6 for more
details.

/ [no Jm odular
This qualifier directs the compiler to generate code that conforms to
the Series 32000 architectural feature of modularity (which allows the
use of external references). For further information see the
Series 32000 GNX — Version 4 Language Tools Technical Notes and
the Series 32000 Programmer’s Reference Manual. Default is /NOMO-
DULAR.

COM PILATION PROCESS 2-11

/ [no Je r r o r [=filename]
The /ERROR qualifier instructs the GNX—Version 4 C Compiler to
direct compilation error messages to an error log file in addition to the
standard output. If filename has no suffix, the suffix . ERR is added. If
no destination file is given, the source filename is used, substituting
. ERR for the source filename’s suffix. Default sends the errors to the
standard output only. For instance,

NMCC /ERROR=FILEl FILEl.C

creates an error log file named FILE1. ERR.

2-12 COMPILATION PROCESS

/ [n o] p r e _ p r o c e s s o r

This qualifier causes the source file to be passed to the GNX C prepro­
cessor before the normal processing by the GNX—Version 4 C
language parser.
Default is / PRE_PROCESSOR.

In addition, the compiler recognizes the following compiler qualifiers and passes them
to the C preprocessor. These qualifiers must be used in conjunction with the
/ PRE_PROCESSOR qualifier.

/ d e f i n e = (n a m e [= d e f \ [, . . .])
The use of this option is equivalent to putting a #def ine n a m e d e f at the
beginning of the C source file. The /DEFINE switch defines n a m e equal to
the value d e f to the preprocessor. If no explicit value is given, n a m e is defined as having the value 1. For example:

NMCC/PRE_PROCESSOR/DEFINE=("VAX", "TARGET_IS_NS32000") SAMPLE . C

works as if the following two defines were at the head of SAMPLE. C:
d e f i n e VAX 1
d e f in e TARGET_IS_NS32000 1

/ [no] comment
The preprocessor normally removes the comments from its output. The
/COMMENT qualifier prevents this. This qualifier is useful when cpp’s out­
put must be examined or when the /ANNOTATE qualifier is used and C com­ments are required in the assembly file. Default is /NOCOMMENT.

/ [no] e x p a n d [= f i l e n a m e]
This qualifier controls whether the output of the preprocessor is saved to a
file. If f i l e n a m e has no suffix, the suffix .MAC is added. If f i l e n a m e is not given, the source file name is used substituting the suffix .MAC for the
source file name’s suffix. (Default is /NOEXPAND.)

/ in c l u d e = { i n c l u d e j d i r [,...])
This qualifier tells the cpp preprocessor to use the specified directory as the
default directory for included files. Include files that are specified using dou­ble quotes, e .g . , #include " f i l e n a m e ", are sought first in the directory of
the compiled file, then in the directories specified by the /INCLUDE option,
and finally in directories on a standard fist (GNXDIR: INCLUDE). If the user
explicitly names the file to be included by using the complete path, i . e . ,
#include " [MYDIR] filename", the named file is sought directly. If angle brackets are used instead of double quotes, e .g . , #include < f i l e n a m e > , the
file is sought in the directories on a standard list (GNXDIR: INCLUDE).

/UNDEFINE= (n a m e [, . . .])Using this qualifier is equivalent to putting #undef n a m e at the beginning
of each C source file.

COM PILATION PROCESS 2-13

2.4 TARGET MACHINE SPECIFICATION
The compiler provides a way for the user to tune the code for a specific target system
by specifying its CPU, FPU and buswidth. This tuning is performed by setting per­
manent defaults using the GNX Target Setup (GTS) facility, or by specifying -K
(/TARGET on VMS) on the command line. Table 2-2 lists the flags and the possible set­
tings. The values for the CPU and FPU can either be the complete device name e.g.,
NS32332 or NS32081, or the last characters of the device name, e.g. 332 or cgl6.
The absence of an FPU on the target system can be indicated by specifying emula­
tion or nofpu (for more details see Section 2.6). The buswidth is specified in bytes.

Table 2-2. Target Selection Parameters

CPU (C) FPU (F) BUSWIDTH (B)
[NS32J008 [NS321081 1
[NS32J016 [NS323181 2
[NS32]cgl6 [NS32]381 4
[NS32]fel6 [NS321580
[NS32]cgl60 emulation
[NS 32] 032
[NS32J332
[NS321532
[NS32]gx32
[NS32]gx320
[NS32]fxl64
[NS32]aml60

nofpu

Example: The following example specifies an NS32CG16 CPU, an NS32081 FPU,
and a buswidth of 4 bytes.
UNIX and MS-DOS
nmcc -KCcgl6 -KF081 -KB4 temp. c (cross-support)
or cc -KCcgl6 -KF081 -KB4 temp.c
VMS
NMCC /TARGET=(CPU=cgl6,FPU=081,BUS=4) TEMP.C

2-14 COMPILATION PROCESS Rev 4.4

2.5 RUN TIME CHECKS
Run-time checks detect and report run-time errors. The compiler by default does not
generate code to perform run-time checks. If run-time checks are required, they can be
turned on selectively or all at once on the command line by using the -a option on
UNIX and MS-DOS systems (/CHECK qualifier on VMS).
The -a option (/CHECK qualifier on VMS) causes all run-time checks to be performed.
The full syntax for UNIX is:

-aflags

And for VMS:
/ [NO]CHECK [= (flags [,...])]

By adding flags, only specified checks are performed. Table 2-3 lists the flags for each
run-time error check.

Table 2-3. Run-time Check Flags

UNIX
MS-DOS

V M S C H E C K P E R F O R M E D

P PARAMETER Intrinsic routines parameters
i INDEX Index exceeding array bounds
n NIL_POINTER Dereferencing through a pointer to the 0 address

Rev 4.4 COM PILATION PROCESS 2-15

An example for generating all checks in the UNIX environment is:

cc -a x.c
nrncc -a x.c

An example for generating only index and NIL pointer checks is:
cc -ain x.x
nmcc -ain x.c

When a run-time error occurs, a detailed message is displayed describing the file, error,
and line at which the error occurred is displayed. The program terminates after the
error information is displayed.

2.5.1 Parameter Check
The parameter check option generates code to check for incorrect parameter values on
calls to intrinsic routines (see Chapter 9). The following calls are checked:
• maskl and mask2 parameters in bitblt routines. The value of the actual maskl

and mask2 parameters in a call to a bitblt routine must be in the range of 0 to
the maximum unsigned value of a word (65535).

• shift_val parameter in bitwt routines. The value of the actual shift_val
parameter in a call to a bitwt routine must be in the range of 0 to 15.

• length in ext and ins routines. The value of the actual length parameter in
calls to ext and ins routines must be in the range of 1 to 32.

• src_addr and dest_addrin extblt routines. The value of the actual src_addr
and dest_addr parameters in calls to a extblt routine must be an even number.

• width in extblt routines. The value of the actual width in calls to a extblt
routine must be an even number and a multiple of the value of the actual
horiz_inc parameter.

• horiz_inc in extblt routines. The value of the actual horiz_inc parameter in
calls to a extblt routine must be either (+2) or (-2).

2.5.2 Array Checks
Each array index is checked to be within the array bounds (i.e. greater or equal to 0
and less then the array’s dimension).

2-16 COMPILATION PROCESS

For example, the following code:

main (){
int index,array[5];
index = 6;
array[index] = 1;

}

will result in run-time in the error message
"bad.c", line 5: value of 6 is out of bounds

NOTE: Index run-time checks are generated only for arrays whose dimen­
sions are known during the compilation of the file.

2.5.3 NIL.POINTER Checks
Whenever a pointer is dereferenced, a check is performed for NIL pointers. If a NIL
pointer is dereferenced, an error message results.
For example, the following code:

main (){
char *ptr; = ((char *) 0);
*ptr = 1;

}
results in the error message in run-time

"badptr.c", line 4: trying to dereference through a NIL
pointer

COMPILATION PROCESS 2-17

2.6 FLOATING-POINT EMULATION
Two different floating point emulation options are available with the GNX—Version 4
C Compiler: Hfp and fpee. Additional information, such as the difference between
these options and the way they are implemented, can be found in Chapter 6 of the
Series 32000 GNX-Version 4 Support Libraries Reference Manual. The use of the Hfp
package is indicated by the -KF emulation compiler option
(/TARGET= (FPU=emulation) on VMS). The Hfp package may be used for cross
configuration only. The use of the fpee package is indicated by the -f or -KFnofpu
compiler option (/TARGET= (FPU=nofpu) on VMS). The fpee package may be used
for cross configuration and for IEEE compatibility in native configuration. These
options may also be set permanently by using the GTS facility.

2.6.1 Floating-point Emulation — Native Configuration
There is no way to unconfigure the FPU on the SYS32/50 and no floating-point emula­
tion is therefore required. To use the fpee library you must do the following:

1. Include a call to the library routine fpinit_ at the beginning of the main
module.

2. Include a -lfpe field after the source and object module in the “compile” com­
mand. For example,

cc filel.c -lfpe -lm

where f ilel. c is the input source file.

2.6.2 Floating-point Emulation — Cross-Configuration
In Cross-Configuration (UNIX and MS-DOS systems system), floating-point emulation
is achieved by using either the -f option on the nmcc invocation line or including a
ca ll to th e IN IT ___ro u tin e prior to an y flo a tin g -p o in t op eration s a n d ex p lic it ly lin k in g
files and libraries.
When - f is used on the nmcc invocation line the cross-compiler driver:

• assumes there is no FPU on the target system
• assumes that the user wants to use floating-point emulation
• generates the correct command line and passes this to the linker

For example:
nmcc -f filel.c

The following is an example of explicitly linking files and libraries:
In cross host:

2-18 COMPILATION PROCESS Rev 4.4

nmcc -c filel.c
nmeld GNXDIR/lib/fcrtO. o filel.o -lfpe -lm -lc

In n a tiv e h o s t (Series 32000/UNIX system):
nmcc -c filel.c
ld GNXDIR/lib/db_fcrtO.o filel.o -ldb_c -ldb_fpe

2.6.3 Floating-Point Emulation — VAX/VMS System
Files and libraries must be explicitly linked to achieve floating-point emulation on a
VAX/VMS system. This is a two-step process:

nmcc filel.c
nmeld gnxdir:fcrtO. obj, filel.obj, gnxdir:libfpe.a, gnxdir:libc. a

2.7 ENVIRONMENT VARIABLES (FOR UNIX AND MS-DOS)
On UNIX and MS-DOS systems, in addition to the command line options, the compiler
accepts several implicit options.
These can be set through the environment variables CMDDIR, TMPDIR, LIBPATH,
PITFILE, and INCLUDEPATH which are described below. The examples given refer
to the UNIX systems. On MS-DOS directory names are separated by backslashes
instead of slashes.

CMDDIR
The environment variable CMDDIR can be given the value of a direc­
tory name, in which the driver looks for the indirectly called programs
(cpp, cc_fe, opt, etc.). For example, if CMDDIR
' '/usr/nsc/lib'' , the driver will look for /usr/nsc/lib/cpp,
/usr/nsc/lib/cc_fe, etc.

TMPDIR
This environment variable redefines the location at which temporary
files are created in the compilation process. The default on UNIX sys­
tems is /tmp. This environment variable should be used on small sys­
tems with tiny /tmp partitions, which overflow when compiling huge
files. On MS-DOS systems it defaults to the current directory.

LIBPATH
The environment variable LIBPATH can be defined to contain one or
more directories (separated on UNIX systems by and on MS-DOS
systems by).
If LIBPATH is defined, then libraries will be taken from one of these
directories. For example, if LIBPATH
/usr/mylib:/usr/yourlib, then libraries will be in either
/usr/mylibor /usr/yourlib.

Rev 4.4 COMPILATION PROCESS 2-19

PITFILE
The environment variable PITFILE is used to redefine the default
filename for profile information table file (PIT) used by sprof and the
compiler. See Chapter 7 for more details.

INCLUDEPATH
If the INCLUDEPATH variable is defined (in a similar format as LIB-
PATH), the standard include files (such as <stdio.h>) will be
searched for in its directories.

AVAIL_SWAP
The environment variable AVAIL_SWAP sets the maximum swap
space of the optimizer in megabyte units. AVAIL_SWAP should be set
to the number of megabytes to be used. See Section 6.7 for use of the
AVAIL_SWAP environment variable.

2-20 COM PILATION PROCESS

Chapter 3
EXTENSIONS TO THE C LANGUAGE

3.1 INTRODUCTION
The GNX—Version 4 C compiler is based on the UNIX portable C compiler, pcc. All
pcc extensions to the C language (as defined by Kernighan and Ritchie) are imple­
mented by the GNX—Version 4 C compiler. In addition, the compiler includes two
main types of extensions:

1. ANSI C features - Most non pre-processor features of the ANSI C Standard are
implemented.

2. Embedded support extensions - Special features to assist programming embedded
applications.

This chapter describes the extensions implemented by the GNX—Version 4 C com­
piler. Section 3.2 reviews the ANSI C extensions. Section 3.3 describes the embedded
support extensions. All other extensions are presented in Section 3.4.

3.2 ANSI FEATURES
This section describes ANSI C features implemented in the GNX - Version 4 C com­
piler. For more details see C - A Reference Manual (second edition) by Harbison and
Steele, and the ANSI C standard.

3.2.1 Function Prototypes
Function prototypes are fully implemented.

E X T EN SIO N S TO TH E C LANGUAGE 3-1

3.2.2 Volatile and Const Qualifiers
volatile and const type qualifiers are fully supported. See Appendix E for more
details.

3.2.3 Void Data Type
The void data type is used as the type mark for a function that returns no result. It
may also be used in any context where the value of an expression is discarded to expli­
citly indicate that a value is ignored. This is done by writing a cast to void.
The type void * is used for the generic pointer and is compatible with other pointer
types.

3.2.4 Signed Keyword
The signed keyword is recognized by the compiler.

3.2.5 The #pragma Directive
The #pragma directive is recognized by the preprocessor and by the compiler. How­
ever, only the use of #pragma for interrupt/trap routines will be recognized by the
compiler. Any other use of the #pragma directive will be ignored by the compiler.

3.2.6 Single-Precision Floating Constants
These floating constants allow the explicit specification of constants as single-precision
in order to eliminate wasteful run-time conversions. This is accomplished by append­
ing an f suffix to a float constant.
Example:

fmax += 17 . Of

The same effect can be achieved by casting the constant to float, as in fmax +=
(float)17.0,-. Not using either the suffix or the cast results in both fmax and the
value 17.0 being converted to double-precision for a double-precision addition; with
the result being converted back to single-precision.

3-2 EX TEN SIO N S TO THE C LANGUAGE

3.2.7 Unsigned Constants
Unsigned constants allow the explicit specification of unsigned constants. This is
accomplished by appending a u suffix to a positive integer constant.

Example: "65u"
As with single-precision floating constants, unsigned constants eliminate wasteful
run-time conversions.

3.2.8 Enumerated Types
Enumerated types as defined in ANSI C standard are fully supported. In addition, a
warning is issued on assignment of different enumeration.

3.2.9 Structure Handling
The GNX—Version 4 C compiler implements the following improvements to structure
handling:

• structure assignment
• structures as function arguments and return values
• reuse of structure and union member names
• initialization of first member of a union
• initialization of auto storage class structures

NOTE: Unlike initialization of automatic scalar variables , initialization of
automatic variables is limited to initializers known at compile time.

3.2.10 Concatenation of Adjacent String Literals
According to the ANSI C standard, string literals that are adjacent tokens are con­
catenated into one character string literal.
For example the following code:

char s = "hello "
"world";

printf(s);

E X T EN SIO N S TO THE C LANGUAGE 3-3

prints the message:
hello world

3.2.11 Obsolesce of the Old Fashioned Compound Assignment
Since old fashioned compound assignment syntax is obsolete in ANSI C, it is no longer
recognized by the GNX compiler.
For example, the following line:
int_var =+ 5; /* used to be equivalent to 'int_var += 5' */

is flagged as an error by the compiler.

3.2.12 Obsolesce of the Old Fashioned Initialization
Since the old fashioned initialization syntax is obsolete in ANSI C, it is no longer recog­
nized by the GNX compiler.
For example, the following code:
int int_var 14; /* used to be equivalent to ' int int_var = 14;'
*/
is flagged as an error by the compiler.

3.3 EMBEDDED SUPPORT EXTENSIONS

3.3.1 Interrupt/Trap Routines Support
As part of the embedded support, the GNX C compiler enables programming of trap
and interrupt handlers in C. Handlers are defined as functions in the regular C syn­
tax, preceded by a #pragma directive used to mark these functions as trap/interrupt
handler routines.
Special code is produced by the compiler for the enter and exit sequence of routines
marked as interrupt/trap handlers. This code is responsible for saving the proper
registers (i.e. all registers used by the routine and scratch registers if the routine calls
another routine) when entering an interrupt/trap routine. When the routine is exited,
the saved registers are restored and RETI (for interrupts) or RETT (for traps) is per­
formed (see the Series 32000 Programmer’s Reference Manual for further details).
3-4 EXTEN SIO N S TO THE C LANGUAGE

This section describes the syntax and semantics of writing interrupt/traps handlers in
the GNX C Compiler. See Appendix E for more details.

INTER R U P T / T R A P H A N D L E R DEFINITION
The interrupt/trap handler is written as a regular C routine in the usual C function
definition syntax. For example:

void hndlr_foo(void)
{

printf("division by zero");
exit (1);

};

The function is designated as an interrupt/trap handler in the following manner (the
#pragma is used to mark an interrupt/trap handler).
Syntax for interrupts:
#pragma interrupt (function_name [,save_regs={int_regs I all_regs}])
Syntax for traps:
#pragma trap [function _name [,save_regs={int_regs I all_regs}])

function_name is the name of the function to be marked as an interrupt/trap
handler. save_regs can be either all_regs (save all registers for general purpose
and floating point), or int_regs (save only general purpose registers).
In many applications the interrupt/trap handlers do not perform floating-point opera­
tions. In such applications there is no need to save the scratch floating point registers.
The option save_regs enables you to specify the register type to be saved (when the
handler calls another routine). The default (if save_regs is omitted) is int_regs.
Options different from all_regs or int_regs are considered errors.
NOTE: Only the registers used in the interrupt/trap routine (and the

scratch registers if the interrupt/trap calls another function) are
saved.

A warning is issued by the compiler if a function is marked as an interrupt/trap
handler using the #pragma directive, but no definition of the function was found in the
compiled module.
Multiple #pragma directives with the same function name are considered errors,
unless they are identical.

E X T EN SIO N S TO THE C LANGUAGE 3-5

Restriction
The #pragma directive must appear before any declaration or definition of the func­

tion. The placement of the #pragma interrupt/trap in any other location results
in an error message.

USI N G I N T E R R UPT/TRAP H A N D L E R S
It is your responsibility to install the address (or descriptor) of the interrupt/trap
handler in the proper entry of the interrupt dispatch table (see the Series 32000 Develop­
ment Board Monitor Reference Manual and the example presented in Appendix E for
further information).
Calling an interrupt/trap handler directly from within the C code is not permitted.
Any attempt to do so causes an error. This is because different instructions are used
for returning from the interrupt/trap routine (RETI/RETT) and for returning from a
regular routine (RET).
Attempts to call an interrupt/trap routine from within the C code is detected by the
compiler only for calls in the same module in which the interrupt/trap routine was
defined. All other calls are not detected by the compiler.

3.3.2 Asm Keyword
The keyword asm is recognized for the insertion of assembly instructions directly into
the generated instruction stream. The syntax is

a.sm(constant-string) ;
where constant-string is a double-quoted character string.
The keyword asm can be used within functions as a statement and outside of functions
as a global declaration. A newline character will be appended to the given string
without causing any change in the assembly code.
See Appendix E for an example.

3-6 EX TEN SIO N S TO THE C LANGUAGE

3.3.3 Intrinsic Routines
The compiler enables the use of Series 32000 /EP application specific instructions
without the need of the asm keyword, by recognizing a set of intrinsic functions known
internally to the C compiler. These intrinsic functions are used in the code as regular
C functions, but are translated to an instruction sequence containing the special
instructions and not to a function call. See Appendix E for more details.

3.4 OTHER EXTENSIONS

3.4.1 $ Sign in Identifiers

The GNX—Version 4 C compiler allows the use of $ signs in identifier names.

3.4.2 Bitfields
The GNX—Version 4 C compiler implements signed, unsigned, int, short, and char
bitfields. Due to the Series 32000 architecture, the code for unsigned bitfields is more
efficient than the code for signed bitfields.

3.4.3 Ident Preprocessor Command
A new cpp-style directive is recognized for placing strings into the . comment section
of the object file. The syntax is

iden t constant-string
where constant-string is a double-quoted character string. The string is passed to the
assembly file with a . ident directive and placed by the assembler in the .comment
section of the object file.*

* See the Series 32000 GNX — Version 4 COFF Programmer’s Guide and the Series 32000 GNX — Version 4 Assembler Reference Manual for a description of the . comment section and the . id en t
directive.

EX TEN SIO N S TO THE C LANGUAGE 3-7

Chapter 4
IMPLEMENTATION ISSUES

4.1 INTRODUCTION
This chapter describes compiler implementation aspects which may differ from other
compilers and which may affect code portability.
Portability issues are recognized by the C standard as issues that may differ from one
implementation to another. The following two sections discuss portability issues. Sec­
tion 4.2 defines how the GNX—Version 4 C compiler behaves under the listed issues.
Section 4.3 lists issues that cause an undefined behavior of the GNX—Version 4 C
compiler.

4.2 IMPLEMENTATION ASPECTS
The following cases are aspects of this implementation.

4.2.1 Memory Representation
• The representation of the various C types in this compiler are •

C T Y P E SERIES 32000 D A T E T Y P E

int
long
short
char
float

double

32-bit double-word
32-bit double-word
16-bit word
8-bit byte
32-bit single-precision floating-point
64-bit double-precision floating-point

• The set of values stored in a char object is signed.
• The padding and alignment of members of structures as described in Section

4.2.4.
• A field of a structure can generally straddle storage unit boundaries.
• While signed bitfields are implemented, it is not recommended to use them since

their implementation is slow. Bitfields are not allowed to straddle a double-word
boundary.

IM PLEM ENTATION ISSU E S 4-1

4.2.2 External Linkage
• There is no limit to the number of characters in external names.
• Case distinctions are significant in an identifier with external linkage.

4.2.3 Types and Conversions
• A right shift of a signed integral type is arithmetic, i.e., the sign is maintained.
• When a negative floating-point number is converted to an integer, it is truncated

to the nearest integer that is less than or equal to it in absolute value. The result
is returned as a signed integer.

• When a double-precision entity is converted to a single-precision entity, it is con­
verted to the nearest representation that will fit in a float with default round­
ing performed to the nearest value.

• The presence of a float operand in an operation not containing double operands
causes a conversion of the other operand to float and the use of single-precision
arithmetic. If double operands are present, conversion to double occurs.

4.2.4 Variable and Structure Alignment
The alignment of entities in a program is a trade-off issue. Most Series 32000 CPUs are
more efficient when dealing with entities aligned to a double-word boundary. This nor­
mally makes it necessary to have some amount of padding added to a program. This
padding represents an overhead in storage space.
The GNX—Version 4 C compiler allows the user to tailor the alignment of
structures/unions and their members and, independently, the alignment of other vari­
ables. Function parameters are always double-word aligned. This allows the calling of
functions across modules without dealing with alignment issues.

Alignment of Variables
Extern, static, and auto variables are aligned in memory according to their size
and the buswidth setting. Table 4-1 lists variable size, buswidth, and the alignment
determined by these two parameters.
A buswidth setting of 1 means “align to 1 byte.” Variables start on a byte boundary, in
other words, there is no alignment and no padding. When allocating storage for vari­
ables, bytes are allocated sequentially with no padding between bytes.
Variables of size 1 are of the C type char, variables of size 2 are of the C type short,
and variables of size 4 or greater are of the C types int, long, float, and double
(size 8).

4-2 IM PLEM ENTATION ISSU E S

Table 4-1. Variable Alignment

B U S W I D T H
V A R I A B L E SIZE (BYTES)
1 2 >= 4

1 byte byte byte
2 byte word word
4 byte word double-word

A buswidth setting of 2 means “align to an even byte.” Variables that are larger than 1
byte start on a word boundary. This means that there may be padding of single bytes.
A buswidth setting of 4 means “align to a double-word boundary” (a byte whose
address is divisible by four). Variables that are 2 bytes long start on a word boundary;
variables that are 4 bytes or larger in size start on a double-word boundary. This
means that there may be padding of up to three bytes.
Arrays are aligned as the alignment of their element type. Structures are aligned
according to the alignment of the largest structure members. This is affected by the
-J (/ALIGN) option. See “Structure/Union Alignment” and “Allocation of Bit-Fields”
for more details.

Example: The arrangement of int i; short si; char c; short s2;

with a buswidth of 2 or 4 is

byte
number: 0 1 2 3 4 5 6 7 8 9

M L
T_____1_____ _____1 ...

GX-01-0-U

Note that to align s2 to a word boundary, padding space of one byte is needed after c.
This padding does not exist with a buswidth of 1.

IM PLEM ENTATION ISSU E S 4-3

Example: The arrangement of

char c; int i;

with a buswidth of 4 is

byte
number: 0F ¥ 7 M M

GX-02-0-U

With a buswidth of 2, the arrangement is

byte
number: 0 1 2 3 4 5

GX-03-0-U

With a buswidth of 1, there is no padding.
It is important to note that the order in memory is the same as the declaration order
only for extern and static variables. The optimizer may reorder auto variables in
order to minimize padding space.
Fastest code is achieved by setting the default alignment to that of the data buswidth
of the CPU (for all but the NS32008, the NS32CG16, the NS32FX16, the NS32CG160
and the NS32016). This can be accomplished by setting the BUS parameter in the tar­
get specification file, or by overwriting that file on the command line with the -KB
(/TARGET) option.

Structure/TJnion Alignment
Structure members are aligned within the structure, relative to the beginning of the
structure, in the same way that variables are aligned in memory. In order to maintain the alignment of the members relative to memory, the structure itself is aligned in memory according to the alignment of its largest members. This alignment may be
controlled by putting - j (/ALIGN) on the command line.
In addition, the total size of a structure is such that it also ends on an alignment boun­
dary of its largest member. This maintains the alignment of individual members in arrays of structures. This is illustrated in the FILE struct example at the end of this section.

4-4 IM PLEM ENTATION ISSU E S

For unions, there is no padding. The alignment of the union’s largest members deter­mine the alignment of the union itself.

Allocation of Bit-Fields
To understand the way bit-fields are handled, think of the situation where a field is
fetched from memory. The number of bits fetched is determined by buswidth. For instance, if a bus is 2-bytes wide, then 2 bytes are fetched, even if only the first few bits are needed. For convenience, the number of bits fetched is called the “fetching emit.”
Note that for the purpose of structure member alignment, the align switch value (1 byte, 2 bytes, or 4 bytes) is taken as a “virtual buswidth,” even if it is different from the actual buswidth.
A complication exists when allocating bit-fields. The complication arises from the fact
that different base types for bit-fields (char short, and int) are supported. The
maximum length of a bit-field is the size of its base type; therefore, there may be times when a bit-field is larger than the buswidth. When the size of the base type is larger
than the buswidth, the size of the fetching unit is considered to be the base-type size.
The precise rules for determining the start of the fetching unit are quite complicated.
In general, it is determined by the current position in the allocation of structure members and by the base-type of the first bit-field in a group of consecutive bit-fields.
An attempt is made to pack consecutive bit-fields as much as possible, as long as the bit-fields remain in the same fetching unit. As soon as a field “spills over” into the next
fetching unit, the alignment is set to the next memory unit (byte, word, or double-word,
according to the align switch value and the base type of the field). A hole of padding bits remains, and the beginning of the spill-over field determines the start of a new
fetching emit for following bit-fields. Using this method, bit-fields are packed as much
as possible while still maintaining the alignment.
If, because of the bit-fields, the structure as a whole does not terminate on a byte boun­
dary, padding bits are added to it to fill up to the end of the last byte it occupies. Addi­tional padding bytes may be needed to fill to the alignment boundary of the largest structure member. This is seen in Figure 4-1. The bit-field does not reach the byte
boundary; therefore, padding bits are added until the byte boundary is reached. Addi­
tional padding bytes are added to fill to the alignment boundary of the double-word
structure member.

Example: struct A {
int i ;
unsigned bitfield : 4;

} a;

IM PLEM ENTATION ISSU E S 4-5

The arrangement of a’s fields in memory will be:

bit number

0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

bitfield padding ,
bits i p a d d i n g b y t e s

Figure 4-1. Bitfield Padding

Figure 4-2 is an example of the alignment on bit-fields given the different align switch
settings. To summarize, the -J (/ALIGN) switch affects:

• the alignment and padding used for structure members and the alignment of variables of the structure type.
• the total storage allocated to a structure by determining if, and how many, pad­

ding bytes will be added after its last field.

Example: struct X {
char c,d,e;
int i: 24;
};

ALIGN = 4/2

bit number 1 1 1 1 1 1 1 1 1 1 22222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

c d e 7777777 i i i /77777/
0 1

byte number
2 3 4 5 6 7

ALIGN - 1
bit number 111111 1111 22222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

c d e i i i

0 1 2 3 4 5 6 7
byte number

Figure 4-2. Alignment on Bitfields

4-6 IM PLEM ENTATION ISSU E S

C A U T I O N

The user must make sure that all parts of the program use the same alignment for the same structures; otherwise, problems result. The following example illustrates this point.
Suppose the example program includes " f oo .h". The file " foo .h" contains the fol­
lowing definitions:

typedef struct {
int
unsigned char
char
char} XXX;

extern XXX array[10];
Note that XXX has two char members at its end. If align=4, any variable declared to
be of type XXX will have two padding bytes added at its end in order to make it occupy
an integral number of double-words. When align=l or align=2, no padding is per­
formed.
If a module using " foo .h" is compiled with align=4 and later linked with a module
compiled with align=l or align=2 that tries to use array [n] where n > 0, the result
will be wrong. This is because the two modules disagree on the size of the elements in
the array.
The solution to this problem is to make sure all modules are compiled using either the
same alignment setting or a revised header file that has been made insensitive to the
setting of the alignment switch. This is performed by including the necessary padding
to enforce equal sizes and offsets. If the latter solution is chosen, XXX is revised to
look like:

typedef struct {
int
unsigned char
char
char
short

} XXX;
No padding is added by the compiler, and the size of the structure is the same for all
switch settings.

counter;
♦pointer;
flagl;
flag2;
padding;

counter;
♦pointer;
flagl;
flag2;

IM PLEM ENTATION ISSU E S 4-7

4.2.5 Structure Returning Functions
In the GNX—Version 4 C compiler, structure returning functions have a hidden argu­
ment which is the address of an area the size of the returned structure. This area is
allocated by the caller and its address is passed as a first argument to the structure
returning function. Structure returning functions are, therefore, re-entrant and inter­
ruptible.
NOTE: At the optimizer’s discretion, small structures (less than 5 bytes)

may be passed and/or returned in a register.

4.2.6 Calling Sequence
The standard Series 32000 calling conventions are used by the GNX—Version 4 C com­
piler for calls to external routines of all languages. It is, therefore, unnecessary to use
the fortran keyword in C programs (if present, the keyword is ignored).
However, local or internal routines (functions which in C are preceded by the static
keyword) are called by more efficient calling sequences.
The standard Series 32000 calling conventions are described in Appendix A.
NOTE: Code using the Series 32000 modularity features cannot be mixed

with code not using those features. By default, the GNX—Version 4
tools assume no modularity.

4.2.7 Mixed-Language Programming
Mixed-language programs are frequently used for a couple of reasons. First, one
language may be more convenient than another for certain tasks. Second, code sec­
tions already written in another language (e.g., an already existing library function)
can be reused simply by calling them.
A programmer who wishes to mix several programming languages needs to be aware of
subtle differences between the compilation of the various languages. Appendix B
describes the issues one needs to be aware of when writing mixed-language programs
and compiling and linking such programs successfully.

4-8 IM PLEM ENTATION ISSU E S

4.2.8 Order of Evaluation
The evaluation order of expressions and actual parameters in the GNX—Version 4 C
compiler differs from those of other compilers. Therefore, programs that rely on a
specific order of evaluation may not run correctly when compiled. In particular, the fol­
lowing orders of evaluation are unspecified:

• The order in which expressions are evaluated.
• The order in which function arguments are evaluated.
• The order in which side effects take place. For instance, a[i++] = i may be

evaluated as
a [i] = i ;
i++ ;

or as
t = i ;
i++;
a [t] = i ;

4.2.9 Order of Allocation of Memory
The order of allocation of local variables in memory is compiler-dependent. After the
optimizer of the GNX—Version 4 C compiler performs register allocation, it reorders
the local variables left in memory. This reordering reduces memory space require­
ments and minimizes displacement length. User programs that rely on any order of
allocation of local variables may not run correctly. See Chapter 6.

4.2.10 Register Variables
By default, register variables, as well as other local variables, are equal candidates for
register allocation. When given complete freedom, the optimizer generally performs a
better job of register allocation than when forced to follow the programmer’s allocation
suggestions. For programs which make assumptions about variables which reside in
specific registers, an optimization flag (-Ou or -0 -Fu on UNIX and USER_REGISTERS
on VMS) is available to enforce the pcc allocation scheme for register variables of
scalar types and of type double. See also Section 6.6.7.

IM PLEM ENTATION ISSU E S 4-9

4.2.11 Floating-Point Arithmetic
The floating-point arithmetic conversion rules of the GNX—Version 4 C compiler com­
plies with the ANSI C standard and may differ from other C compilers.
In an operation not containing double operands, if one of two operands is of type
float, the other operand is converted to type float and single-precision arithmetic is
used. The result of the operation is of type float. Some other compilers perform
such operations in double precision.
In old C compilers, the result of float-returning functions was actually returned in dou­
ble format and placed in the F0-F1 register pair. When compiled by the GNX—Version
4 C compiler, such functions return the result in float format and place the result in
the F0 register. Note that assembly programs that interface with float-returning func­
tions may now incorrectly expect a double precision result.
Float parameters, however, are passed as double because the C language semantics do
not require type identity between actual and formal parameters. Code is generated in
the called function to convert these actual double values back to float if necessary.
Floating-point constants are of type double, unless they are typecast to float or are
suffixed by the letter fo r F. By preference, constants of type float should be used
in float expressions to avoid the unnecessary casting of other operands to double preci­
sion. For example,

fmax += 17.5f;

is more efficient than
fmax += 17.5;

The following examples are of double constants and float constants.
Example: double constants float constants

14.5e6 14.5e6f
14.5 (float) 14.5

4.3 UNDEFINED BEHAVIOR
In the following cases, the behavior of the GNX—Version 4 C compiler is undefined:

• The value of a floating-point or integer constant is not representable.
• An arithmetic conversion produces a result that cannot be represented in the

space provided.
• A volatile object is referred to by means of a pointer to a type without the volatile

attribute.
4-10 IM PLEM ENTATION ISSU E S

An arithmetic operation is invalid, such as division by 0, or produces a result that
cannot be represented in the space provided, such as overflow or underflow.
A member of a union object is accessed using a member of a different type.
An object is assigned to an overlapping object.
The value of a register variable has been changed between a set jmp call and a
longjmp call.

IMPLEMENTATION ISSUES 4-11

Chapter 5
OPTIMIZATION TECHNIQUES

5.1 INTRODUCTION
The main difference between the GNX—Version 4 C Compiler and other compilers is
the optimizer. Recompiling and optimizing with the GNX—Version 4 C Compiler will
result in a 10 percent to 200 percent speedup for most programs, with the mean above
30 percent.
This chapter describes some of the advanced optimization techniques used by the
GNX—Version 4 C Compiler to improve speed or save space. The most important tech­
niques are:

• Value propagation
• Constant folding
• Redundant assignment elimination
• Partial redundancy elimination
• Common subexpression elimination
• Flow optimizations
• Loop unrolling
• Dead-code removal
• Loop-invariant code motion
• Strength reduction
• Induction variable elimination
• Register-allocation by coloring
• Peephole optimizations
• Memory-layout optimizations
• Fixed frame
• Runtime feedback optimization

The following sections describe these techniques in more detail. For coding suggestions
and other practical guidelines on how to make best use of the optimizing aspects of the
compiler, see Chapter 6.

OPTIMIZATION TEC H N IQ U ES 5-1

5.2 THE OPTIMIZER
The optimizer, shared by all the GNX — Version 4 Compilers, is based on advanced
optimization theory, developed over the past 15 years. Central to the optimizer is an
innovative global-data-flow-analysis technique which simplifies the optimizer’s imple­
mentation. It allows the optimizer to perform some unique optimizations in addition to
standard optimizations found in other compilers. Optimizations are performed globally
on the code of a whole procedure at a time and not just in a local context.
The optimizer can be regarded as a multi-step process. Each step performs its particu­
lar optimizations and provides new opportunities for the optimizations of the next step.

STEP ONE
The first step in the optimization process is to read in the source program one pro­
cedure at a time and to partition this procedure into basic blocks. A basic block is a
straight line sequence of code with a branch only at the entry or exit. Some of the
optimizations performed during this step are:

• Value Propagation
Value propagation (or copy propagation) is the attempt to replace a variable with
the most recent value that has been assigned to it. This optimization is primarily
useful in the special case of constant propagation. It is important because it
creates opportunities for other optimizations. Value propagation can be turned
off by the CODE_MOTION optimization flag (-Om on UNIX systems).

• Constant Folding
If an expression or condition consists of constants only, it is evaluated by the
optimizer into one constant, thereby avoiding this computation at run-time. The
optimizer, using algebraic properties such as the commutative, associative and
distributive law, sometimes rearranges expressions to allow constant folding of
part of an expression.
The GNX—Version 4 C Compiler also folds floating-point constant expressions.
This feature can be turned off using the NOFLOAT_FOLD option (-Oc on UNIX sys­
tems) of the optimizer.

• Redundant Assignment Elimination
The optimizer detects and eliminates assignments to variables which are not used
later in the program or which are assigned again before being used. This optimi­
zation can often be applied as a result of value propagation.
Value propagation, constant folding, and redundant assignment elimination are
illustrated in Figure 5-1.

5-2 OPTIMIZATION TEC H N IQ U ES

a = 4 ;
if (a*8 < 0) b = 15;
else b = 20;

... code w h ic h uses b b u t n o t a ...
is translated by the GNX—Version 4 C Compiler front end into the
following interm ediate code

a <— 4
if (a*8 >= 0) goto Ll
b <- 15
goto L2

Ll: b <— 2 0
L2: ...

which is transform ed by “value propagation” into
a <— 4
if (4*8 >= 0) goto Ll
b <- 15
goto L2

Ll: b <- 20
L2: ...

which after “constant folding” becomes
a <- 4
if (true) goto Ll
b <- 15
goto L2

Ll: b <— 20
L2: ...

“dead code removal” results in
a <r- 4
goto Ll

Ll: b <- 20
L2: ...

which is transformed by another “flow optimization” into
a 4
b 20

Since there is no further use of a, a <— 4 is a “redundant assignment:”
b <- 2 0

The program sequence

Figure 5-1. Relationship Between Various Optimizations

STEP TWO
The second step in the optimization process is the construction of the program’s “flow
graph.” This is a graph in which each node represents a basic block. As mentioned in
STEP ONE, a basic block is a linear segment of code with only one entry point and one
exit point. If there is a path in the program that leads from one basic block to another,
then an “arrow” is drawn in the graph to represent this path.

OPTIMIZATION TEC H N IQ U ES 5-3

Figure 5-2 illustrates a flow graph, representing an "if-then-else" sequence.

Figure 5-2. Flow Graph

During the construction of the flow graph, additional optimizations can be performed:
• Flow Optimizations

Flow optimizations reduce the number of branches performed in the program.
One example is to replace a branch whose target is another branch with a direct
branch to the ultimate target. This often makes the second branch redundant.
At other times code is reordered to eliminate unnecessary branches. Branches to
“return” are replaced by the return-sequence itself.

• Loop Unrolling
Loop unrolling duplicates the body of a loop. This reduces the number of times
that the loop control code is executed. Loop unrolling improves performance by
reducing the number of increment, comparison, and branch instructions.
This technique is particularly useful for small loops whose iteration control con­
stitutes a significant part of loop execution time. However, because loop unrolling
does involve the duplication of the loop’s body, more space is needed.
When a loop is unrolled, it is replaced by code with the following structure:

1. Pre-Loop Code - Checks whether to enter the unrolled loop body or to branch
to the tail-code.

2. Unrolled Loop Body - The loop body duplicated a number of times.
3. Tail-Code - Performs the remaining iterations.

Based on a loop’s code size, the optimizer determines whether to perform loop
unrolling, and if so how many times. An example of loop unrolling is shown in
Figure 5-3.

5-4 OPTIMIZATION TEC H N IQ U ES

Code sequence for initialization of an array :
foo(int j)
{
int i ;
int a[100];
for (i=j; i < 100; i++) {

a[i] = 0;}
}

When unrolled 5 times, is equivalent to the following code sequence:

foo(int j)
{

int i ;
int a [100];

/* pre-loop code */
i = j;
if (i > 95) goto TA IL_CO DE;

/* unrolled loop body */
for (; i < 95; i += 5) {

a[i] = 0;
a [i + 1] = 0;
a[i+2] = 0;
a [i+3] = 0;
a [i + 4] = 0;}

TA IL_CO DE:
/* tail code */
for (; i < 100; i++)

a [i] = 0;}
Figure 5-3. Example of Loop Unrolling

• Dead Code Removal
Flow optimizations are also designed to help the optimizer discover code which
will never actually be executed. Removal of this code, called “dead code removal,”
results in smaller object programs.

STEP THREE
Step three of the optimization process is called “global-data-flow-analysis.” It identifies

OPTIMIZATION TECHNIQUES 5-5

desirable global code transformations which speed program execution. Many of these
concentrate on speeding up loop execution, since most programs spend 90 percent or
more of their time in loops. Global-data-flow-analysis is the computation of a large
number of properties for each expression in the procedure.
Unlike most optimizers, which employ unrelated and separate techniques, the optim­
izer centers around one innovative technique which involves the recognition of a situa­
tion called “partial redundancy.” This technique is so powerful that many other optim­
izations turn out to be special cases. The central idea is that it is wasteful to compute
an expression, say a * b , twice on the same path; it is often faster to save the result of
the first computation and then replace the fully redundant second computation with
the saved value. More common, however, is the case in which an expression is par­
tially redundant; there is one path to an expression, which already contains a computa­
tion of that expression, but another path to that same expression does not.
The following optimizations are performed by a common technique:

• Elimination of Fully Redundant Expressions
This optimization is often called “Common Subexpression Elimination.” It is rela­
tively simple to avoid the recomputation of fully redundant expressions. The
optimizer saves the result of the first computation (usually in a register variable)
and uses the saved value in place of the second computation. Performance­
conscious programmers sometimes do this themselves, but many cases, such as
array index and structure member calculations, are recognized only by the optim­
izer.

• Partial Redundancy Elimination
A partially redundant expression can be eliminated in two steps. First, insert the
expression on the paths in which it previously did not occur; this makes the
expression fully redundant. Second, save the first computations and use the save
value to replace the redundant computation. An example of this optimization is
shown in Figure 5-4.
Partial redundancy elimination sometimes results in slightly larger code, but exe­
cution is not harmed, since all inserted expressions are in parallel and only one is
actually executed.

• Loop Invariant Code Motion
If an expression occurs within a loop and its value does not change throughout
that loop, it is called “loop invariant.” Loop invariant expressions are also par­
tially redundant. This can be understood by realizing that there are two paths
into the loop body: one is through the loop entry (the first time the loop is exe­
cuted), and the other is from the end of the loop, while the exit condition is false.
Loop invariant computations are, therefore, removed from the loop in the same
way: the expression is first inserted on the entry path to the loop, and then is
saved on the entry path in a register, while the redundant computation in the
loop is replaced by that register.

• Strength Reduction
This optimization globally replaces complex operations with simpler ones. This is

5-6 OPTIMIZATION TEC H N IQ U ES

In the following code, a*b is “partially redundant” (computed twice only if C is true):
if (C)

x = a*b;
else

b = b+10;
y = a*b;It is first transformed into a “fully redundant” expression
if C = 1

x <— a*b
else

b +- b+10
temp +— a*b

y <— a*b

Then, as in the simple case of “redundant expression elimination,” this is reduced to
if C = 1

temp <— a*b
x +— temp

else
b <- b+10
temp +— a*b

y +— temp

Now, the expression a*b is computed only once on any path.
Figure 5-4. Example of Partial Redundancy Elimination

primarily useful for reducing complex array-subscript computations (involving
multiplication into simpler additions).

Example: static int a[15]; for (i = 0; i<15; i + = l)
a [i] = 1 ;

is transformed into:
for (i=0 , p=a; i<15; i + = l, p+=4)

*p = 1;

• Induction Variable Elimination
Induction variables are variables which maintain a fixed relation to other vari­
ables. The use of such variables can often be replaced by a simple transforma­
tion. For instance, the example given for strength reduction can be reduced to the
following:

OPTIMIZATION T E C H N IQ U ES 5-7

for (p=a; p<a+60; p+=4)
*P = 1;

STEP FOUR
The fourth optimization step performed by the optimizer, and possibly the most
profitable, is the “register allocation” phase. Register allocation places variables in
machine registers instead of main memory. References to a register are always much
faster and use less code space than respective memory references.
The algorithm used by the optimizer is called the “coloring algorithm.” First, global-
flow-analysis is performed to determine the different live ranges of variables within the
procedure. A live range is the program path along which a variable has a particular
value. Generally, an assignment to a variable starts a new live range; this live range
terminates with the last use of that assigned value.
The optimizer subsequently constructs a graph as follows: each node represents a live
range; two nodes are connected if there exists a point in the program in which the two
live ranges intersect. The allocation of registers to live ranges is now the same as
coloring the nodes of the graph so that two connected nodes have different colors. This
is a classic problem from graph theory, for which good solutions exist. If there are not
enough registers, more frequently used variables have higher priority than less fre­
quently used ones. Loop nesting is taken into account when calculating the frequency
of use, meaning that variables used inside of loops have higher priority than those that
are not.
Most optimizing compilers attempt register allocation only for true local variables, for
which there is no danger of “aliasing.” An alias occurs when there are two different
ways to access a variable. This can happen when a global variable is passed as a refer­
ence parameter; the variable can be accessed through its global name, or through the
parameter alias. A common case in C is when the address of a variable is assigned to a
pointer.
The optimizer takes a more general approach by considering all variables with
appropriate data types as candidates for register allocation, including global variables,
variables whose addresses have been taken, array elements, and items pointed to by
pointers. These special candidates cannot reside in registers across procedure calls and
pointer references and, therefore, normally have lower priority than local variables.
However, instead of completely disqualifying the special candidates in advance, the
decision is made by the coloring algorithm.
Additional important optimizations performed by the register allocator are:

• Use of Safe and Scratch Registers
The Series 32000 machine registers are, by convention, divided into two groups:
registers RO through R2 and F0 through F3, the so-called “scratch” registers
which can be used as temporaries but whose values may be changed by a pro­
cedure call, and the “safe” registers (R3 through R7 and F4 through F7) which are

5-8 OPTIMIZATION T E C H N IQ U ES

guaranteed to retain their value across procedure calls. The register allocator
spends a special effort to maximize the use of scratch registers, since it is not
necessary to save these upon entry or restore them upon exit from the current
procedure. The use of scratch registers, therefore, reduces the overhead of pro­
cedure calls.

• Register Parameter Allocation
The register allocator attempts to detect routines, whose parameters can be
passed in registers. This is possible for static routines only, since by definition all
the calls to such routines are visible to the optimizer. Calls to other (externally
callable) routines are subject to the standard Series 32000 calling sequence.
Passing parameters in registers is another way to reduce the overhead of pro­
cedure calls.

STEP FIVE
The last optimization step consolidates the results of all previous steps by writing out
the optimized procedure in intermediate form for the separate code generator. Some
reorganization takes place during this step. Local variables which have been allocated
in registers are removed from the procedure’s activation record (frame), which is reor­
dered to minimize overall frame size.

5.3 THE CODE GENERATOR
The back end (code generator) attempts to match expression trees with optimal code
sequences. It applies standard techniques to minimize the use of temporary registers,
which are necessary for the computation of the subexpressions of a tree. The main
strength of the code generator lies in the number of “peephole optimizations” it per­
forms.
Peephole optimizations are machine-dependent code transformations that are per­
formed by the code generator on small sequences of machine code just before emitting
the code. Some of the most important peephole transformations are listed below:

• The code for maintaining the frame of routines which have no local variables, or
whose variables are all allocated in registers, is removed.

• Case statements are optimized into binary search, linear search or table-indexed
code (using the Series 32000 CASE instruction), in order to obtain optimal code in
each situation.

• The stack and frame areas are always aligned for minimal data fetches.
• Reduction of arithmetic identities, i.e., x*l = x, x+0 = x, etc.
• Use of the ADDR instruction instead of ADD of three operands.
• Some optimizations performed in the optimizer, such as the application of the dis­

tributive law of algebra, i.e., (10 + i) *4 = 40+4*i, provide additional opportuni­
ties to the code generator to fully exploit the Series 32000’s addressing modes.

OPTIMIZATION T E C H N IQ U ES 5-9

• Use of ADDR instead of MOVZBD of small constant.
• Strength Reduction Optimizations. Use of MOVD instead of MOVF from memory

to memory; use of index addressing mode instead of multiplication by 2, 4 or 8;
use of combinations of ADDR instructions or shift and ADD sequences instead of
multiplication by other constants up to 200.

• Fixed Frame Optimization. An important contribution of the code generator is its
ability to precompute the stack requirements of a procedure in advance. This
allows the generation of code which does not use (nor update) the FP (frame
pointer), resulting in cheaper calling sequences.
This optimization is most useful when the procedure contains many procedure
calls because it is not necessary to execute code to adjust the stack after every
call. Parameters are moved to the pre-allocated space instead of pushing them on
to the stack using the top-of-stack addressing mode. Note that when using this
optimization, the run-time stack pointer stays the same throughout the pro­
cedure, and all references to local variables are relative to it and not to the FP.
Also note that since parameters are not pushed on to the stack, the evaluation
order of parameters is not defined solely by their original order.

While most optimizations are beneficial for both speed and space, some optimizations
favor one over the other. The default setting of the optimizer switch favors speed over
space in trade-off situations. The following are the effects of favoring space over speed
(by an optimization flag):

• Code is not aligned after branches.
• All returns within the code are replaced by a jump to a common return sequence.
• Certain space-expensive peephole transformations are not performed.

5.4 MEMORY LAYOUT OPTIMIZATIONS
The following memory layout optimizations are performed by the GNX—Version 4 C
Compiler:

• Frame variables that are allocated in registers are removed from the frame.
• Internal, static routines whose parameters are passed in registers have smaller

frames.
• The stack alignment is always maintained. Stack parameters are passed in

aligned positions.
• Frame variables are allocated in aligned positions. The optimizer reorders these

variables to save overall frame space.
• Code is aligned after every unconditional jump.

5-10 OPTIMIZATION TEC H N IQ U ES

5.5 RUNTIME FEEDBACK
The optimizer has normally no way to determine the actual runtime behavior of a pro­
gram. What looks like a loop may in reality never be executed. The GNX—Version 4 C
Compiler has an option to create a statistic record of a program’s execution path. This
execution profile can then be used in a subsequent optimization pass of the same pro­
gram, to improve the optimizer’s heuristic algorithms. This technique, call runtime
feedback optimization, effects mainly the following optimizations:
• Loop Unrolling
• Register Allocation

For more details on runtime feedback optimization see Section 7.4.

OPTIMIZATION TEC H N IQ U ES 5-11

Chapter 6
GUIDELINES ON USING THE OPTIMIZER

6.1 INTRODUCTION
The following sections are provided as guidelines on using the GNX—Version 4 C
Compiler. Experienced programmers should understand this compiler’s optimization
techniques in order to:

• Learn how to port programs to the GNX—Version 4 C Compiler.
• Understand how to recognize and avoid nonportable code.
• Avoid using programming tricks that rely on the way ordinary compilers generate

code.
• Avoid performing “hand optimizations” that the optimizer does anyway.
• Avoid writing code that may prevent certain optimizations.
• Understand how to select the different command line optimization flags to

achieve optimal performance.
Please read Chapter 5 for a complete description of the optimization techniques.

6.2 OPTIMIZATION FLAGS
Optimization options available to the user are listed in Table 6-1. Default options are
marked by (*).

G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-1

Table 6-1. Optimization Options

UNIX VMS DESCRIPTION
o NOOPT does not invoke the optimizer phase.
B RUNTIME_FEEDBACK performs runtime feedback optimization

* b NORUNTIME_FEEDBACK does not perform runtime feedback optimi­
zation

c NOFLOAT_FOLD does not compute floating-point constant
expressions at compile time.

* c FLOAT_FOLD performs floating-point constant folding.
* F FIXED_FRAME uses fixed frame references, avoids use of

the FP register or the Series 32000
ENTER/EXIT instruction.

f NOFIXED_FRAME compiles for debugging: uses slower FP
and TOS addressing modes.

* I NOVOLATILE applies all optimizations to all variables
(including global variables).

i VOLATILE compiles system code: assumes that all
global and static memory variables and
pointer dereferences are volatile.

* L S TANDARD_LIBRARIES assumes use of standard run-time library
1 NOSTANDARD_LIBRARIES assumes that all routines have corrupting

side effects.
* M C ODE_MOTION performs global code motion optimizations.

m NOCODE_MOTION does not perform global code motion
optimizations.

N LOOP_UNROLLING performs loop-unrolling optimizations.
* n NOLOOP_UNROLLING does not perform loop-unrolling optimiza­

tions.
* u NOUSER_REGISTERS ignores user register declarations.

U USER_REGISTERS allocates user-declared register variables
in registers as done by pcc.

* R REGISTER_ALLOCATION performs the register allocation pass of the
optimizer.

r NOREGISTER_ALLOCATION does not perform the register allocation
pass of the optimizer.

* s SPEED_OVER_SPACE optimizes for speed only.
S NOS PEED_OVER_SPACE does not waste space in favor of speed.

(This option takes an optional switch, see
6.6.9.)

1-9 maximal memory/swap-space available is
1 through 9 Mbytes (default: 4 Mbytes).

6-2 G UID ELIN ES ON U SIN G THE OPTIMIZER Rev 4.4

The -0 option enables the optimizer. Specifying -0 on the command line results in
the fastest possible code without undue increase in code size. (-O bC F lU M nL R S). In
special cases, such as when compiling operating system code, there may be a need to
further refine the optimization phase by specifying optimization flags. Individual
optimization flags can be specified either by using the -F option or by simply append­
ing them to -0. Table 6-2 lists reasons why a particular default option might be
changed.
Even when the optimizer pass is omitted, some local optimizations are performed by
the code generator. Note that specifying the compiler debug option (- g) on the com­
mand line automatically turns off the optimizer fixed frame flag (-O F) , unless other­
wise specified by the user.
Also note that using the compiler target option (-K B 1) favors space over speed by sav­
ing alignment holes normally produced when the bus width is the default (-K B 4).

6.2.1 Optimization Options — UNIX and MS-DOS Systems

6.2.2 Optimization Options on the Command Line — VMS Systems
The fastest possible code, without undue increase in code size, is generated by specify­
ing /OPTIMIZE on the command line. This is equivalent to entering:

/OPTIMIZE^(FIXED_FRAME, CODE_MOTION, REGISTER_ALLOCATION, FLOAT_FOLD,
SPEED_OVER_SPACE, NOVOLATILE, STANDARD_LIBRARIES, NOUSER_REGISTERS,
NOLOOP_UNROLLING,NORUNTIME_FEEDBACK)

In special cases, such as when compiling operating system code, there may be a need to
further refine the optimization phase by specifying optimization flags. Table 6-2 lists
reasons why a particular default option might be changed.
Even when the optimizer pass is omitted, some local optimizations are performed by
the code generator. Therefore, specifying /N O O PT IM IZ E (which is the default for this
qualifier) is equivalent to entering:

/OPTIMIZER NOOPT, NOFIXED_FRAME, NOCODE_MOTION, NOREGISTER_ALLOCATION,
NOFLOAT_FOLD, SPEED_OVER_SPACE, NOVOLATILE,
NOSTANDARD_LIBRARIE S, USER_REGISTERS,NOLOOPJJNROLLING,
NORUNTIME_FEEDBACK)

Note that specifying the compiler debug option (/D EB U G) on the command line
automatically turns off the optimizer fixed frame option (FIXED_FRAM E), unless other­
wise specified by the user.
Also note that using the compiler option /TARGET^ (BU SW ID TH =1) favors space over
speed by saving alignment holes normally produced when the bus width is the default
(BUSW IDTH=4).

Rev 4.4 G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-3

There is normally no reason to turn off any of the optimization options; the default pro­
duces the best results, see Table 6-2. Refer to Chapters 2 and 5 for more on optimiza­
tion options.

6.2.3 Changing Default Optimization Options

Table 6-2. Changing Default Optimization Options

OPTION REASON FOR CHANGING OPTION SEE ALSO
NOFIXED_FRAME (-O f) to debug the program or to compile nonport­

able programs that assume knowledge of the
run-time stack.

6.3.4, 6.4

VOLATILE (-O i) to compile system programs, such as device
drivers, which contain variables that change
or are referenced spontaneously.

6.3.2

N 0_S TANDARD_LIBRARI E S (-0 1) to compile programs which re-implement stan­
dard functions, in a way which does not agree
with the optimizers assumptions (i.e., have
side effects).

6.3.5

NOFLOAT_FOLD(-Oc) to compile programs whose correct execution
depends on the order in which floating-point
expressions are evaluated.

6.3.6

NOCODE_MOTION(-Om) to compile programs which contain huge func­
tions, which are a drain on the system’s
resources and are time consuming to optimize.

LOOP_UNROLLING(-ON) to compile program segments containing tight
loops which are most often executed.

6.6.9

USER_REGISTERS(-Ou) to compile programs which rely on the register
allocation scheme of pcc.

6.6.7

NOREGISTER_ALLOCATION(-Or) to run programs that cease to work when per­
forming register allocation.

6.6.7

NOSPEED_OVER_SPACE (-O s) or
SAVE_SPACE_REG_ALLOC (-O sz)

to compile programs which must fit as tightly
as possible in memory.

6.6.9

NOOPT (-O o or use -F flags without
giving -0)

when the optimizer phase is not required and
another flag needs to be turned off as well.

6.6.10

RUNTIME_FEEDBACK(-0B) when run-time feedback is required to achieve
better optimization results based on the typi­
cal behavior of the program.

6.6.11

6-4 G U ID ELIN ES ON U SIN G TH E OPTIMIZER Rev 4.4

6.3 PORTING EXISTING C PROGRAMS
Almost every program which runs when compiled by other C Compilers, will compile
and run on the GNX—Version 4 C Compiler without any changes in the sources. How­
ever, there might be a few programs which will cease to work in the same manner as
before, when compiled by the GNX—Version 4 C Compiler. There might be other pro­
grams, which seem to work when compiled without the optimizer, but which cease to
work when optimized. The following sections describe some of the reasons for this
phenomenon.

6.3.1 Undetected Program Errors
The single most common reason for a nonfunctioning program is an undetected pro­
gram error, which becomes apparent only when compiling under a different compiler or
only when optimizing. Many of these errors result from the fact that the program
author relied on the way the compiler compiled, and thereby created a program which
is clearly nonportable.
The following partial list points out some of the most common problems:
• Uninitialized local variables.

Since the memory and register allocation algorithms of the GNX—Version 4 C
Compiler are very different from those of other compilers, a local variable may wind
up in a completely different place. For example, a programmer may fail to initialize
a local variable, with the assumption that, upon program start, it would certainly
contain zero. This may become false as a result of the register allocation phase of
the GNX—Version 4 C Compiler.

• Relying on memory allocation
One cannot assume that if two variables are declared in a certain order, they will
actually be allocated in that order. A program that uses address calculations to
proceed from one declared variable to another declared variable might not work.

• Failing to declare a function
A char returning function will return a value in the lower-order byte of RO,
without affecting the other bytes. A failure to declare that function where it is
used, might result in an error. For instance, assuming that get_code () is defined
to return a char, then

main() {
int i ;
if ((i = get_code()) == 17) do_something();

}
might never execute do_something even if get_code returns 17 since the whole
register is compared to 17, not just the low-order byte.
A similar problem exists for functions which return short or float, or those
which return a structure.

G U ID E L IN E S ON U SIN G THE OPTIMIZER 6-5

System code is distinguished from general “high-level” code, by the fact that it is
machine-dependent, often contains real-time aspects and interspersed asm statements,
and is often driven by asynchronous events, such as interrupts. Examples of system
code are interrupt routines, device handlers and kernel code. From the optimizer’s
point of view, ordinary looking global variables can actually be semaphores or
memory-mapped F0, that can be affected by external events, which are not under the
optimizer’s control. Even so, it is still possible to optimize such code, by taking some
precaution, and by activating some special optimization flags. Some of these aspects
are discussed in the following sections.
• Volatile variables

Volatile variables are variables, which might be used or changed by asynchronous
events, such as F0 or interrupts. The /O P T lM IZ E = V O L A T lL E (- O i under the
UNIX operating system) qualifier treats all global variables, static variables, and
pointer dereferences as volatile, which means that they are not subject to any
optimizations. As a result, the number and nature of memory references to them
will not change. Remember that individual identifiers can be declared as volatile by
using volatile type qualifiers. The following examples demonstrate the consequences
of volatile variables and pointer dereferences.
Examples: 1. x = 17; x = 18;

If x is volatile, both of the two assignments to x are executed even
though the first one seems redundant.

2. x = 9;
y = x + 1 ;

If x is volatile, this program segment is not optimized to
y = 10;

3. *p = b + c;

if *p is volatile, then this results in

6.3.2 Compiling System Code

movd b, REG
addd c, REG
movd REG, 0 (p)

and not
movd b, 0 (p)
addd c, 0 (p)

The difference stems from the fact that the second sequence, though fas-
ter, makes two references to 0(p)
wanted only one.

when the programmer may have

6-6 G U ID E L IN E S ON U SIN G THE OPTIMIZER

Optimizing a program changes the timing of various constructs. In particular, delay-
loops might now run faster than before.

6.3.3 Timing Assumptions

6.3.4 Low-Level Interface
• Relying on register order

A program that relies on the fact that a given register variable resides in a
specific register must be compiled with the /OPTIMlZE=USER_REGlSTERS flag
(-Ou on UNIX systems) turned on (see Section 6.6.7).

• Relying on frame structure
A program, that relies on a specific frame structure, must be compiled with the
FIXED_FRAME flag turned off (-Of on UNIX systems). This includes, in particular,
programs that use the standard alloca () function (which allocates space on the
user’s frame).
Referring to variables on the frame of a different function (such as the caller of
this function) by complex pointer arithmetic may also cease to work. See Appen­
dix A for more details.

• Using asm statements
The code inserted by asm statements may cease to work because the surrounding
code produced by the GNX—Version 4 C Compiler will normally be different from
another compiler’s code. See Section 6.6.6.

6.3.5 Using Nonstandard Library Routines
The GNX—Version 4 C Compiler assumes by default that all the C standard
mathematical library routines listed in Table 6-3 are available as a standard run-time
library. These library routines have absolutely no access to global variables. There­
fore, calls to these routines are specially recognized and marked as calls which do not
disturb optimizations of the global variables of the program. The global library vari­
able errno is treated as volatile, so no references to it will be optimized. This is nor­
mally a safe assumption since it is unusual for a program to redefine (and thereby
hide) these standard routines. The functions abs, fabs, and f fabs actually compile
into in-line code and do not generate a procedure call at all.
In addition, a set of intrinsic routines known internally to the computer are supported.
See Chapter 8.
The compiler generates a warning message whenever it compiles a program which does
redefine one of these routines. In this case the user must decide whether the redefined
routine’s behavior is consistent with the previously mentioned assumption of the
optimizer. If it is not, the user has the choice of renaming the redefined routine (so
that calls to it are not specially recognized), or of using the NOS TANDARD_L IBRAR Y flag
(-01 on UNIX), which turns off the recognition of all library routines.

G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-7

Table 6-3. Recognized Library Routines

abs acos f acos asin f asin atan f atan
atan2 fatan2 cabs f cabs ceil f ceil cos
f cos cosh f cosh erf f erf erf c f erf c
exp f exp f abs ff abs fmod
ff mod fmodf ffmodf f rexp gamma hypot fhypot
j o j 1 j n Id exp log flog loglO
floglO modf pow fpow sin f sin sinh
f sinh sqrt f sqrt tan f tan tanh f tanh
yo y i yn

6.3.6 Reliance on Naive Algebraic Relations
Since the optimizer performs floating-point constant folding, i.e. , it rearranges expres­
sions to evaluate constant subexpressions at compile time, some naive algebraic
expressions are folded away.

Example: do {
a = a * 2 ;

}
while ((a + 1.0) - 1.0 == a) ;
is optimized to
do {

a = a*2;
}
while (1) ;

which was not the programmer’s intention.

To maintain the program and keep the programmer’s original intention, the program­
mer should use the NOFLOAT_FOLD (-Oc on UNIX systems) optimization flag to
suppress the folding optimization.

6-8 G U ID ELIN ES ON U SIN G THE OPTIMIZER

6.4 DEBUGGING OF OPTIMIZED CODE
Most of the time, the user should not need to debug an optimized program. The major­
ity of all bugs can be found before optimization is turned on. However, there are some
rare bugs which make their appearance only when the optimizer is introduced, bugs
that are difficult to find without a debugger.
The problem is that code motion optimizations and register allocation obsolete most of
the symbolic debugging information generated by the compiler. The following “rules of
thumb” can be employed when using symbolic debug information together with the
optimizer:

• Line number information is correct, but the code performed at the specified lines
may be different from non-optimized code as a result of various code motion
optimizations, such as moving loop invariant expressions out of loops.

• Symbolic information for global variables is normally correct, since global vari­
ables are rarely put in registers. In particular, if a global variable is not refer­
enced within the current procedure, the value in memory is valid and the sym­
bolic information is correct.

• Symbolic information for parameters is correct except in the following two cases:
1. When a parameter is allocated a register and there is an assignment to that

parameter, the symbolic information is incorrect.
2. When a parameter of a local procedure is passed in a register as a result of

an optimization, the symbolic information is incorrect. In this case, the
symbolic information of all other parameters is incorrect because their offset
within the procedure’s frame is changed.

• Symbolic information of local variables is likely to be incorrect because most of
the local variables are put in registers; the rest of the local variables are reor­
dered into new frame locations, or "optimized out".

• Note that if symbolic information is requested, then slightly different code is gen­
erated. This happens because the optimizing flag FIXED_FRAM E (-O F on UNIX
systems) is automatically disabled when the /DEBUG (- g qualifier on UNIX sys­
tems) is used. Specifically, the e n t e r instruction is always generated at the
entry of procedures, and frame variables are referenced by FP-relative rather
than SP relative addressing mode. Without disabling this flag, symbolic debug­
ging is almost impossible.

It is helpful to have an assembly listing of the program in question which has been
compiled with the /A SM (- S on UNIX systems) and the /ANNOTATE (- n on UNIX sys­
tems) qualifiers. Such a listing contains comments from the optimizer regarding its
actions (see Section 6.5).

G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-9

6.5 IMPROVED ANNOTATION
The GNX C compiler has a unique annotation feature which helps in the debugging of
an optimized code.
Upon invocation with the - n and - S flag (/ANNOTATE and /A SM on VMS), the com­
piler emits the source lines into the assembly code as comments (see Section 2.3). In
addition the GNX optimizer emits annotated comments explaining its actions.

Example: The following code accumulates the first n elements of array a into the
global accumulator acc. n resides in register r4.

for(i = 0; i < n; i++)
acc += a [i] ;

The optimizer may generate the following annotated code

------- for(i = 0; i < n; i++)
temp initialized to &a

movqd $ (1),r2
movd $ (0)+_a,rl

load (moved up) acc to r3
movd _acc,r3

. LL2 :
-acc += a (i];

addd 0 (rl),r3
addqd $ (1),r2

temp = temp + 4 (temp incremented)
addqd $ (4),rl
cmpd r2,r4
bit .LL2

store (moved down) r3 to acc
movd r3,_acc

The actions taken by the optimizer can be inferred from the comments:

"load (moved up) acc to r3 " (the value of the variable acc
is first loaded into the register r3)

"temp initialized to & a (temp initialized) " (while per­
forming strength reduction optimization, a compiler

6-10 G U ID ELIN ES ON U SIN G THE OPTIMIZER

pointer is initialized by the first element’s address)
"temp = temp + 4 (temp incremented)" (the temporary

pointer allocated by the optimizer is updated to point to
the next element at the end of each iteration)

"store (moved down) r3 to acc" (the value of acc is
updated)

6.6 ADDITIONAL GUIDELINES FOR IMPROVING CODE QUALITY
Using some of the following programming guidelines results in programs that take
advantage of the GNX—Version 4 C Compiler optimizations.

6.6.1 Static Functions
It is not only good software engineering practice, but also good optimization practice
to declare all functions not called from outside the file as “static.” This allows the
optimizer to use a more efficient internal calling sequence upon calls to such routines.
This internal calling sequence passes parameters in registers rather than over the
stack. In addition, when modular mode is used the BSR instruction is used instead of
the CXP instruction.
If a program consists of a single file and this is discovered by the GNX—Version 4 C
Compiler (by indicating compilation and linking in one step), then all functions within
that file are automatically considered static by the compiler, resulting in the same
advantages.

6.6.2 Integer Variables
Many operators, including index calculations, are defined in C to operate on integers,
and imply a conversion when given non-integer operands. Therefore, to avoid frequent
run-time conversions from char or short to int, integer variables, particularly
variables which serve as array-indices, should be defined as type int and not short
or char .

6.6.3 Local Variables
Local variables should be used as much as possible, particularly when they are
employed as loop counters or array indices, as they have a better chance of being
placed in registers.

G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-11

6.6.4 Floating-Point Computations
In programs which do not require double-precision floating-point computations, a
significant run-time improvement can be achieved by paying attention to the following
points:

• define all functions as returning float type, not double
• define all constants to be ’float’ using the f suffix or cast expressions explicitly to

float
• use the single precision version of the standard floating-point routines such as

fabs () instead of abs (), f sin () instead of sin (), etc.

6.6.5 Pointer Usage
The following terms are used throughout this section.
• potential definition

A statement potentially defines a memory location if the execution of the statement
may change the contents of that memory location.

Example:
1. A call to a function potentially defines all global variables, because

their value may change during the execution of that function.
2. Imagine the following code fragment.

extern int *p, *q;

*P = 8;

The assignment statement potentially defines the memory location
*q, because q may point to the same memory location as p. The
location *p is defined, i.e., given a new value, by the assignment.
About location *q, it can only be said that it may be changed,
hence the potential definition.

• potential use
A statement “potentially uses” a memory location if it may reference (read from)
that memory location.

• address taken variable
A variable is considered “address taken” if the address operator (&) is applied to it
within the file or if the variable is a global variable that is visible by other files.

• volatile/non-volatile registers
By convention, the registers are divided into volatile registers (registers RO through

6-12 G U ID ELIN ES ON U SIN G THE OPTIMIZER

R2 and F0 through F3) and non-volatile registers (registers R3 through R7 and F4
through F7). Volatile registers may be changed by a procedure call, whereas non­
volatile registers are guaranteed to retain their value across procedure calls.
Therefore, all non-volatile registers used within a procedure have to be saved at the
entry and restored at the exit of that procedure.

The optimizer does not keep track of the contents of pointers; therefore, it cannot tell,
for any given location in the program, where each pointer is pointing.
Since a pointer can point at any memory location, the optimizer makes the following
assumptions concerning pointer usage:

1. Every assignment to a “pointer dereference,” the location pointed to by a pointer,
potentially defines all other pointer dereferences and all address-taken variables.

2. Every use of a pointer dereference (i.e, a value read through a pointer) potentially
uses all other pointer dereferences and all address-taken variables. This is
because any accessible memory location is potentially read.

3. Every function call potentially defines and potentially uses all pointer derefer­
ences, all address taken-variables, and all global variables. This is so because
that function’s code may, using pointers, read and/or write any accessible memory
location. Of course, any global variable may be used and/or changed.

It is advisable to keep these assumptions in mind when using pointers. In particular,
using arrays is preferable to using pointers. The following example illustrates this
point. Assume a is an array of char and p is a pointer to char. The two program
segments perform the same function.

Example: program segment 1
for (i = 0 ; i != 10 ; i++) {

a[i] = global_var; a[i+l] = global_var + 1;
}
program segment 2
for (p = &a[0] ; p != &a[10] ; p++) {

*p = global_var; *(p+l) = global_var + 1;
}

In program segment 1, global_var can be put in a register. In program segment 2,
however, p may point to global_var. The first statement (*p = global_var)
potentially defines global_var; therefore, it cannot be put in a register.
Another aspect of this same issue is that of common subexpressions. The optimizer
normally recognizes multiple uses of the same expression and saves that expression in
a temporary variable (usually a register). This cannot be performed when worst case

G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-13

assumptions are made about potential definition of expressions (as described in the
previous section). Expressions that contain pointer dereferences or global variables are
vulnerable; therefore, if many uses of the same expression span across procedure calls,
it is advisable to save them in local variables. In the following example:

fool(p -> x) ;
foo2(p -> x) ;

The expression p -> x cannot be recognized by the optimizer as a common subexpres­
sion because fool () may change its value. The following hand optimization may
help:

t = p -> x; /* t is local, therefore */
fool(t); /* not potentially defined by fool() */
foo2(t); /* so its value is still valid for foo2()
*/

The programmer is using his knowledge that p -> x is not changed by fool () to
make this optimization. The optimizer cannot do the same because it assumes the
worst case.

6.6.6 Asm Statements
Extreme care should be taken if using asm statements. If using asm statements,
remember the following:

• The optimizer is not aware of the contents of an asm statement. Therefore, it
assumes that an asm statement potentially defines and potentially uses all of the
variables (including local variables). This means that no common subexpressions
can be recognized across an asm statement.

• In order to allow an asm statement to use a specific register (e .g . , asm ("save
[r0 , rl, r2] ") ;), the optimizer de-allocates all the registers.

• The compiler usually generates code which is different from the code generated by
other compilers. This applies particularly to allocation of local variables and
parameters of static procedures.

• The code surrounding the asm statement may change as a result of changes in
other parts of the procedure.

• An asm statement that contains a branch instruction or a branch target (label)
may cause the optimizer to generate wrong code.

For the above mentioned reasons, it is strongly advised to look at the generated assem­
bly code before and after inserting asm statements into a program.

6-14 GUIDE LINES ON U SIN G THE OPTIMIZER

6.6.7 Register Allocation
The C language is unique in that it allows the programmer to specify (or rather recom­
mend) that some variables be allocated to machine registers. The optimizer normally
ignores these recommendations, since it turns out that in most cases the optimizer’s
own register allocation algorithms are as good as or superior to the programmer’s
recommendations. There are several reasons for this fact:

• The user can use a register for one variable only. The optimizer however allo­
cates a register along live ranges of variables, making it possible for several vari­
ables with non-conflicting live ranges to use the same register.

• The user can declare as a register, only local variables whose addresses are not
taken; whereas, the optimizer allocates global variables as well as variables
whose addresses are taken (where possible).

• The user can allocate variables in safe registers only. Therefore, every register
which is used has to be saved/restored at the entry/exit of the procedure. The
optimizer allocates variables that do not live across procedure calls in unsafe
registers. Therefore, these registers need not be saved/restored.

• Because of code motion optimizations, the number of references of variables may
be changed. Therefore, the choice of register variables may not be optimal. In
the following example:

int j ;
register int i;
i = j ;
if (i == 3 II i == 4 || i == 5)

undesired effects result if optimized with the /USER_REGISTERS flag (-Ou on
UNIX systems) The reason is that j is copy propagated and replaces all
occurrences of i. Therefore, i occupies a register for nothing, while j may end
up in memory (because either the ordinary register allocation of the optimizer is
not invoked or there are no registers left for j).

6.6.8 sefjmpO
Calls to setjmp() are specially recognized by the compiler. Procedures that contain
calls to set jmp () are only partially optimized because procedure calls may end up in
a call to longjmpO. Code motion optimizations are performed only within linear
code sequences (those sequences not containing branches or branch targets). Register
allocation is limited to optimizer generated temporary variables, register declared vari­
ables, and variables whose live ranges do not contain function calls.

G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-15

6.6.9 Optimizing for Space
The default behavior of the GNX—Version 4 C Compiler optimizes for optimal speed
without undue increase in code size. There are several things that can be done to
improve code density:

• Optimize with the NOSpeed_over_space flag on (-Os on UNIX/MS-DOS sys­
tems), or with the SAVE_SPACE_REG_ALLOC flag on (-Osz on UNIX/MS-DOS sys­
tems). The latter flag performs all the space-saving optimizations of the former,
with the addition of space-saving register allocation.

• Squeeze the data area by using smaller alignment between variables, i.e.,
/TARGET= (BUS=1) on VMS systems or -KB1 on UNIX and MS-DOS systems.

• Do not use loop-unrolling optimization.
The optimizer has certain heuristics based on size considerations, whether to per­
form loop-unrolling. These heuristics also take into account the relevant on-chip
caches. Nevertheless, if code density is important, it is advisable not to use the
loop-unrolling optimization.

• Squeeze all structure definitions by using the /ALIGN=1 switch (-J1 on UNIX
systems). See Section 4.2.4.

6.6.10 Using/NOOPT (-Oo) option
The / 0PTIMIZE=N00PT (-Oo) compiler option is used when the optimizer phase is not
required and another flag needs to be turned off as well. For instance,
/OPTIMIZE^ (NOOPT, FIXED_FRAME) (-OoF) turns on fixed frame without running the
optimizer, while /OPTIMIZE= (NOOPT, FIXED_FRAME) (-Of) turns off fixed frame but
runs the optimizer.
With / OPTIMIZE=NOOPT (-Oo) by itself, the optimizer is not run, but the code­
generator performs all its optimizations (see Section 5.3).

6.6.11 Runtime Feedback Optimization
In the runtime feedback optimization the optimizer makes use of runtime information
collected during a previous runs of the program in order to better predict the program’s
run-time behavior. As a result, optimizations done by the compiler will be based on
assumptions closer to the real behavior of the program. Runtime feedback optimiza­
tion effects mainly the following optimizations:
• Loop Unrolling
• Register Allocation

Runtime feedback optimization is invoked by using the -OB
(/OPT=RUNTIME_FEEDBACK) compiler option with the same set of compilation flags

Rev 4.46-16 G UID ELIN ES ON U SIN G THE OPTIMIZER

used in the previous runs, except for -B (/GATHER on VMS). The PIT file in the
current directory (or the one specified in the PITFILE environment variable global
symbol) is assumed to contain the data for the runtime feedback option.
NOTE: If a different set of compilation flags is used for runtime feedback

compilation, the compiler will issue a warning, and will disable the
runtime feedback optimization.
The runtime information used for the rimtime feedback optimiza­
tion should represent the real run-time behavior of the program.
Otherwise, the optimizer relies on false assumptions. This may
actually cause degradation in code quality.

For more details on runtime feedback optimization see Section 7.4.

6.7 COMPILATION TIME REQUIREMENTS
Using the optimizer slows down the compilation process. It is therefore recommended
to use the optimizer only on final production versions of a program. The amounts of
resources (time and memory) vary strongly from program to program and actually
depend on the size of the routines in the compiled program file. The larger a routine,
the more time and memory needed to optimize it. This behavior is more or less qua­
dratic, the optimizer needs about four times the resources to optimize a routine of 1000
lines than to optimize a routine of 500 lines.
If time or memory requirements are unacceptable and routines cannot be reduced to
reasonable (500 lines) size, it is possible to turn off some optimizations, using the
NOCODE_MOTION (-Om on UNIX systems) and/or the NOREGISTER_ALLOCATION (-Or
on UNIX systems) flags.
On UNIX host systems, an optimization flag (-0number) is available to set an upper
limit on the memory requirements of the optimizer to a certain number of megabytes.
This can be useful on host systems without virtual memory or with a limited swap-
space configuration. If necessary, the optimizer then skips certain optimizations on
huge routines only, in order to stay under the chosen limit. In such cases, an appropri­
ate message is given. This flag is only necessary when compiling modules with
extremely large procedures (over 500 lines in a single procedure), a case when the
optimizer may need a larger swap space than the one currently available. For
instance,

-02

limits the optimizer to 2 Mbytes of swap space.
An alternate method for setting an upper limit on memory requirements, on native sys­
tems, is to use the environment variable AVAIL_SWAP, which sets the maximum swap

G U ID ELIN ES ON U SIN G THE OPTIMIZER 6-17

space requirement of the optimizer in megabyte units. This environment variable
should be set to the number of megabytes to be used. The user can choose from 1
Mbyte to 16 Mbytes. If the user’s choice is outside of these parameters, the default value of 4 Mbytes is chosen. For instance,

setenv AVAIL_SWAP 2

makes 2 Mbytes of swap space the default. This can be overridden using the previ­
ously described -Onumber option.

6-18 G UID ELIN ES ON U SIN G TH E OPTIMIZER

Chapter 7
PROFILE INFORMATION

7.1 INTRODUCTION
Profile information is statistical data about the run-time behavior of a program. Such
information can be gathered by compiling the program using the -B option on UNIX
and MS-DOS (/GATHER on VMS), and executing the compiled program with typical
inputs.
Each execution of the compiled program results in the accumulation of profile informa­
tion in a special file. Profile information is used by the compiler optimizer and by the
sprof tool.
The compiler optimizer can use profile information to achieve better code optimization.
Code can be recompiled using the compiler option -OB on UNIX and MS-DOS
(/OPT=RUNTIME_FEEDBACK on VMS).
sprof processes profile information and displays it as an annotated source file. You
can use sprof’s output to:
• Pinpoint the most often executed sections of program code in order to determine

areas for concentrated hand optimization.
• Test the expected relative frequency of execution of different code sections.
• Provide indication of test coverage.
• Discover bugs by spotting unexpected execution times of code lines.

Rev 4.4 PROFILE INFORM ATION 7-1

7.2 GATHERING PROFILE INFORMATION

7.2.1 The Profile Information
Profile information is gathered for each basic block (see Section 5.2). A precise trace of
every basic block execution is recorded. From this information the execution rate of
each source line can be deduced.

7.2.2 Code Compilation
When compiling a program on which we want to gather profile information additional
code is generated by the compiler. Also a profile information tables (PIT) file is
created. When the program is executed, the additional code that was generated accu­
mulates profile information internally and adds it to the PIT file before the program
exits.
The extra code is generated by the compiler code-generator and the PIT file is created
by the tool pgen after the linking phase.
The following operations are performed:

1. Allocation of buffer space in the .bss section (uninitialized data). The buffer space
is used for basic block execution counters, which keep track of the number of
times each basic block is executed.

2. Insertion of extra code at the beginning of each basic block. This code increments
the proper basic block execution counter each time a block is executed.

3. Generation of additional symbolics. Additional symbolics are generated in order
to map the basic blocks in the executable file to source lines.

4. Linking of the program with the object file pfb_exit.o (pfb_exit .obj on
VMS) or db_pfb_exit .o for cross compilation on a Series 32000/UNIX system.
This file includes a customized version of the standard library _exit routine,
which accumulates the internally accumulated profiling information into the PIT
file at the end of each execution.

5. Creation of the PIT file. The tool pgen is invoked to create the PIT file and ini­
tialize its execution counters to zero.

See section 7.2.4 for more information on the PIT file and section 7.2.3 for more infor­
mation on pgen.
NOTE: Profile information cannot be gathered on an optimized program.

The optimizer is not to be invoked together with the profile infor­
mation gathering option.

7-2 PROFILE INFORM ATION

7.2.3 P g en
The tool pgen reads the executable file and generates the profile information table
(PIT) file that is used by sprof and the compiler optimizer (see Section 7.2.4).
On UNIX and MS-DOS systems pgen is automatically invoked by the driver when
called with the -B flag (Section 7.2.6). On VMS systems pgen must be invoked
separately after linking the program compiled with the /GATHER qualifier (Section
7.2.7).

7.2.4 The PIT File
The PIT (Profile Information Tables) file contains accumulated profile information.
The PIT file is created by pgen (see Section 7.2.3) from the executable program, just
after linking. The PIT file is updated each time the program is executed by the addi­
tional code in the pfb_exit object file (Section 7.2.5) just before execution is com­
pleted.
The PIT file can be used by both sprof and the profile feedback option of the optim­
izer. PIT is the default name for the file in which profile information accumulates. In
order to override this default name, the environment variable (logical name on VMS)
PITFILE can be used. If PITFILE is set during profile gathering, information is accu­
mulated to a file bearing this name.

7.2.5 The File pfb_ .exit. o (pfb_exit. obj)
This file must be linked with the profiled program in order to enable profile-
information accumulation. The pfb_exit. o (pfb_exit. obj on VMS) file includes a
customized version of the exit routine of the C runtime-library. This routine calls the
_pit_accumulate routine, which accumulates the profile information into the PIT file
at the end of program execution. You can call the _pit_accumulate routine from
anywhere within your program to get a "snapshot" of the profile at the point of call.
This can be useful for programs that never exit.
In the UNIX and MS-DOS environments, linkage with pfb_exit.o is performed
automatically by the compiler when compiling with the -B option (see Section 7.2.6).
In the VMS environment, linking with pfb_exit.obj must be done, separately, by
the user (see Section 7.2.7).

Rev 4.4 PROFILE INFORM ATION 7-3

NOTES: 1. For cross compilation on a Series 32000/UNIX system, the file is
named db_pfb_exit.o (.obj on VMS).

2. In native environment, pfb_exit.o uses the standard I/O
library of libc for writing the PIT file.
In the cross environment virtual I/O facilities of the cross C
library, which are based on debugger and monitor support, are
used.

3. For modular compilation (-X option on UNIX and MS-DOS,
/MODULAR on VMS) a special version of the pfb_exit.o exists. In
native UNIX environment it is called Xdb_pfb_exit. o, in cross
configuration UNIX environment Xpfb_exit.o, in VMS
environment Xpfb_exit.obj, and in MS-DOS environment
xpfb_exi . o.

7.2.6 Compilation in the UNIX and MS-DOS Environments
The syntax for compilation to gather profile information on the UNIX environment is:

nmcc -B[<pitfile>] filename (cross-support configuration)
cc -B[<pitfile>] filename (native configuration)

<pitfile> is the name of the PIT file to be created. If <pitfile> is omitted, the
default name PIT is given. Note that there should be no space between -B and
<pit f ile>.

The compiler driver automatically calls all the necessary subprograms when invoked
with the -B option. This includes linking with the special pfb_exit .o file (Section
7.2.5) and calling pgen (Section 7.2.3) after linking.

7.2.7 Compilation in the VMS Environment
The syntax for compilation to gather profile information on the VMS environment con­
sists of three steps:

1. Compilation. Use the /GATHER compiler qualifier in the syntax:
nmcc /GATHER my_module.c

2. Link the program with pfb_exit . obj. Use the syntax:

nmeld gnxdir:crtO.obj, gnxdir:pfb_exit.obj, -
my_module.obj, ... ,gnxdir:libc. a

7-4 PROFILE INFORM ATION Rev 4.4

The pfb_exit. obj file must appear before the standard libraries.
For modular compilation (/MODULAR) linkage is done with an object file named
Xpfb_exit. obj.

3. Run the tool pgen to create the PIT file. Use the syntax
pgen <executable_name> [<PIT_file_name>]

If <PIT_f ile_name> is not specified, it will be named PIT by default.

7.2.8 Code Execution
The profiled program can be executed repeatedly with any desired inputs. Profile infor­
mation from each execution accumulates in the PIT file.

7.2.9 Disabling Profile Information Accumulation
Profiling information will not be accumulated under any of the following conditions:
— No PIT file exists
— Read or create permission for the PIT file is denied
— The PIT file is not in the expected format
— The PIT file and executable file are incompatible
— The cumulative number of executions of a certain basic block in the profiled pro­

gram exceeds the maximum count limit, which equals the maximum unsigned long
integer minus one (decimal 4294967295).

These conditions only disable the accumulation of profiling information, and do not
affect the normal operation or semantics of the profiled program.
The PIT file can be removed or renamed temporarily in order to disable the accumula­
tion of profiling information.

7.2.10 Redefining Standard l i b c Symbols
The following standard libc symbols (routines and variables) are used by the profile
gathering code:

_ c l e a n u pc l o s ee r r n oe t e x t_ e x i t

PROFILE INFORM ATION 7-5

f c l o s ef g e t sf o p e nf p r i n t ff p u t sgeten v_ i o bmktemprename (l i n k and u n l i n k in native SYS-Vsystems)r i n d e x (s t r r c h r in native SYS-V systems)s p r i n t fs s c a n fs t r c p ys y s _ e r r l i s ts y s _ n e r ru n l i n k

Redefining any of these routines/variables would override the standard definitions from
the standard C library and might cause unexpected results.

7.2.11 Execution Time Considerations
The additional code produced in each basic block for gathering profile information may
slow down a CPU-bound program by a factor of 20%-30% (without taking I/O into
account).
On cross systems where the loading of a program and I/O operations are on slow serial
lines, use of - B may slow down execution significantly. This is because I/O operation
will be performed during the accumulation of the profiling information (just before the
profiled program exits).

7.2.12 Space Considerations
The additional code and space needed the PIT file adds approximately 20%-30% to the
original code and uninitialized data size.
Additional symbolic information is also produced. However this symbolic information
occupies only disk space and is not loaded into memory (since it is not a component of
real code or data).

7-6 PROFILE INFORM ATION

7.3 SPROF - THE GNX SOURCE PROFILER
The sprof profiler provides high-level language information about the runtime
behavior of a program. The profile consists of an annotated listing of the source file. A
number is printed at the beginning of each line to indicate the number of times that
line was executed, sprof is supplied as part of the GNX—Version 4 C compiler pack­
age, and runs on all cross and native GNX supported environments.
Unlike other profilers, sprof provides information on the basic block level (see Section
5.2). This means that sprof does not sample the program periodically. Instead, it
gathers a precise trace of every basic block execution. From this information the exe­
cution rate of each line can be deduced.
sprof does not provide either timing information about a program or function
caller/callee statistics. Rather, sprof gives an exact count of source-line executions.
A standard profiler, such as the UNIX profiler prof (supported by the compiler in
native environment), can be used to collect timing or caller/callee information.

7.3.1 Example - A Factorial Program

l1481

ma i n (){ i n t i ;
f o r (i = - 6 ; i <= 7; i ++) i f (i >= 0)p r i n t f (11 f a c t o r i a l (%d) %d", i , f a c t (i)) ;

i n t f a c t (n) i n t n;{36 i f (n == 0)8 r e t u r n 1;
28 r e t u r n (n * f a c t (n - 1)) ;0 }

/ * l i n e 1 * / / * l i n e 2 * // * l i n e 3 * // * l i n e 4 * / / * l i n e 5 * / / * l i n e 6 * / / * l i n e 7 * / / * l i n e 8 * /
/ * l i n e 1 0 * / / * l i n e 1 1 * / / * l i n e 1 2 * / / * l i n e 1 3 * / / * l i n e 1 4 * / / * l i n e 1 5 * / / * l i n e 1 6 * / / * l i n e 1 7 * /

Figure 7-1. Example of sprof output

The number "1" annotating the first basic block on line 5 indicates that the main pro­
gram was executed once. The "14’’ and "8" annotations of lines 6 and 7 indicate that
the body of the loop in main was executed 14 times, of which only 8 resulted in a call
to the function fact.
It can be deduced that the function fact did not return implicitly (i.e. without using
an explicit return), as shown by the "0" annotation of line 17. In contrast, the func­
tion main did return implicitly, as can be seen from the "1" annotation besides the
closing brace of function main (line 8).
The runtime behavior of the function fact is also illustrated, fact was called 36
times. Only 8 of these invocations were from main, therefore the remaining 28 calls
were recursive. This is shown by the annotation of "28" on line 16.

PROFILE INFORM ATION 7-7

7.3.2 Running SPROF
After program execution and accumulation of profile information in the PIT file,
sprof can be called to process and present profile information. Various options are
available to control the output (see Section 7.3.3).
In order to process profile information the following files must exist:
• The source file(s)
• The executable file
• The PIT file

Figure 7-2 illustrates the flow of data through sprof. nnm (nm in native
configuration) is the standard GNX utility for displaying the symbol table of a COFF
object file (see the GNX Commands and Operations Manual).

PIT file executable Source
Symbol Module
Table

Source-module
Source lines

BB-to-line mapping

± r
Profile

Annotated
Source Module

PIT == Profile Information Table
BB == Basic Block
BBV == Basic Block Visits

Figure 7-2. sprof Data Flow Description

7-8 PROFILE INFORM ATION

7.3.3 SPROF Invocation
The tool sprof is supplied as a standard part of the GNX—Version 4 C compiler package both on UNIX and VMS.
SYNTAX (UNIX and MS-DOS):
sprof [-d source_dir] [-e e x e c _ file]

-p p i t _ f i l e \ [—o o u tp u t_ f i le \- f[fmc<margin_width>]] _source_file • • •]
SYNTAX (VMS):
sprof [/DIRECTORY=source_dir] [/EXECUTABLE=exec_file]

/PITFILE-pi t_file~\ [/OUTPUT=output_f i 1 e~\
/FORMAT=([format_option [, . ..]
source_file ...]

Where:
source_dir The directory where the source file is located. The default is the current directory.
e x e c _ file The name of the executable file. The default is the executable

name as found in the PIT file.
p i t _ f i l e The name of the PIT file to be used. The default name is PIT or

the value of the environment variable PITFILE.
o u tp u t_ fi le The name of the output file to be generated. The default is stan­dard output (SYS$OUTPUT on VMS).
so u rce _ file The name of the source file to be profiled. The default is all

source files in the executable file that were compiled with the -B
option.

The -f options (format_option on VMS) are:
f (FORMFEED on VMS)

output a FORM-FEED character between output source files
m (MARK_MARGIN on VMS)mark the MARGIN of the source with vertical bar " I " characters.
c (COMPACT on VMS)

print counts COMPACT (the count for sequential basic blocks is only printed if different from the previous basic block). The
default is to print counts for every basic block.

<margin-width> (VUDTH=margin_width on VMS)
The width reserved for printing profiling counts. The default is 8. A negative value will left-justify the counts.

Rev 4.4 PROFILE INFORM ATION 7-9

CAUTION
Compatibility of the PIT file and the program source file is determined only by the
creation date of the PIT file. Therefore, a source file with the same name, and an older date than the PIT file, but with contents different from the program source file, will not be recognized by sprof as being incompatible with the PIT file. Such a situation will result in an incorrect sprof output.

7.3.4 Counts and Basic Blocks
sprof prints basic block counts according to the following rules:

1. Print a count only for lines which start a basic block. (No count will be printed
for lines which consist of declarations or calls to a cpp macro defined to nothing.)

2. Print a count only for the first executable statement of a group that is mapped to the same line.
Example:

100 i f (a < 5) j = 3;
The count in the profiled line is the number of times the first executable statement of the group which is mapped to this line (i.e i f (a < 5)) was executed. However, the number of times the condition was true can not be
deduced from this output. This information will be provided if the code is
written in the form

100 i f (a < 5)
27 j = 3;

7-10 PROFILE INFORM ATION

7.4 RUNTIME FEEDBACK OPTIMIZATION
The runtime feedback optimization option is used to enable the compiler to tune optim­izations based on statistical information on typical run-time behavior.
The optimization algorithms used by the optimizer are based on assumptions and heuristics. However, run-time behavior may be different. In such a case, the compiler can achieve better optimization by operating under a different set of assumptions as suggested by the profile information.
For example, the following optimizations can be improved by using the profile feedback option:
• Register allocation - Usually the optimizer heuristics used to determine register

allocation are based on loop nesting and conditional execution. By using the profile information, register allocation is based on a better estimate of the use of variables.
• Loop unrolling - Loop unrolling optimization enlarges code size. Therefore it is

worthwhile to optimize only those loops which are entered many times. The profile information provides improved estimation of where this optimization should be per­formed.
For more details on these optimizations see Section 5.2.
The rimtime feedback mechanism is divided into two phases, described in the following two sections.

7.4.1 Profile Information Gathering
This phase involves compilation and program execution. It is described in detail in
Section 7.2. The profile information is collected in the PIT file (see Section 7.2.4).

NOTE: The profile information gathered in the PIT file must represent the
true run-time behavior of the program. Otherwise false assump­tions are made by the optimizer and recompilation can cause degra­dation in program performance.

7.4.2 Runtime Feedback Compilation
The runtime feedback compilation is invoked using the -OB (/RUNTIME_FEEDBACK on
VMS) compiler option with the same set of compilation flags used in the previous runs,
except for -B (/GATHER on VMS). The PIT file in the current directory, or the one specified in the PITFILE environment variable (logical name on VMS) is assumed to contain the data for the runtime feedback option.

PROFILE INFORM ATION 7-11

NOTE: If a different set of compilation flags is used for runtime feedback
compilation, the compiler will issue a warning, and will disable the
runtime feedback optimization.

7-12 PROFILE INFORMATION

Chapter 8
INTRINSIC FUNCTIONS

8.1 INTRODUCTION
The GNX C compiler generally uses in its code selection the most efficient instructions
from the Series 32000 instruction set. There are, however, certain instructions which
have no natural matching C construct or that are not fully utilized by the C language.
Such instructions are in particular the Application Specific Instruction Set (ASIS) of
the NS32CG16, NS32CG160, NS32FX16 and NS32GX320 microprocessors (see the
Series 32000/EP Embedded Processor Databook) and certain standard Series 32000 instruc­
tions. The GNX C compiler provides access to these instructions by means of intrinsic
functions. The NS32CG160, NS32FX16 and NS32CG16 CPUs share the same core
instructions. These microprocessors will be referred to as the CG-Core throughout this
chapter. A familiarity with ASIS instructions is assumed.
In order to use intrinsic functions, include the appropriate GNX header file cgl6.h,
gx32 0 .h or ns32 000 .h, prior to any call to the function. The function call must con­
tain a parameter list compatible with the formal parameter list of the prototype. Oth­
erwise it is considered a redeclaration of the function, and a proper warning message is
issued by the compiler.
Redefining an intrinsic function, i.e., defining a different function with the same name
as an intrinsic function, results in an error. However, it is possible to use intrinsic
function names for different functions by specifying the -Fl or -01 option
(NO_STANDARD_LIBRARIES on VMS). (See Section 6.3.5).
Special compilation options generate various run-time checks for flagging improper
values of parameters in calls to intrinsic functions. The compilation options and the
run-time checks performed are described in Chapter 2, Section 2.5.

8.1.1 Using Intrinsic Functions
Intrinsic functions are known internally to the compiler. The syntax used for invoking
intrinsic functions is the same as for regular C functions. However, no function call will
appear in the code generated by the compiler. Instead, an instruction sequence con­
taining the application specific instruction will be produced. The optimizer will
attempt to allocate parameters in the registers as needed by the instruction.

INTRINSIC FU NC TIO NS 8-1

NOTE: Unlike regular functions, taking the address of an intrinsic routine
is not permitted. Any attempt to do so will results in an error mes­
sage.

There is one intrinsic function for each supported special instruction. Generally the
function’s name is the instruction assembly mnemonic, with a leading underscore.
This conforms to the ANSI C convention of global identifiers with leading underscores
being reserved for the implementation. The parameters and the result type of each
function are described in full ANSI C prototype format in special GNX header files.
Currently there are three such header files:
• ns32000.h

For the general Series 32000 instructions.
• cgl6.h

For the CG-Core Application Specific instructions.
• gx3 2 0 .h

For the NS32GX320 Application Specific instructions.
A complete description of each function is given in Sections 8.3, 8.4 and 8.2, respec­
tively. Examples of using the functions are provided in Appendix E.

8.2 General Series 32000 Intrinsic Functions
This section describes the special Series 32000 instructions accessible by use of intrin­
sic functions. Supported instructions are divided into:

Single bits
Instructions that refer to a single bit in memory. They enable efficient set­
ting (sbit), clearing (cbit), inverting (ibit) and testing (tbit) of a single
bit. Single bit instructions find the first set bit in a given byte, word or
double-word (ffs), calculate an absolute bit address (cvtp), and access
semaphore bits in memory (cbiti and sbiti).

Bit-Fields
Instructions that manipulate a consecutive group of bits in memory. They
include ext, which extracts a bit-field, ins, which inserts a bit-field, and
rot, which rotates the bits in an integral operand.

String Operations
Instructions that operate on memory blocks. They include mo vs, which
copies consecutive bytes in memory, and movst, which copies the bytes in a
memory block translating each byte using a translation table.

Operations On Dedicated Registers
Instructions that access dedicated processor registers. They enable loading
and storing of dedicated processor registers (lpr and spr), setting the pro­
cessor configuration (setcfg), and setting or clearing bits in the PSR

8-2 INTRINSIC FU N C TIO NS

(bicpsr and bispsr).

NOTE: Extreme care should be taken when operating on dedi­
cated processor registers, as these operations may criti­
cally alter the environment in which the program runs.

Trap-Activating Instructions
These instructions enable activation of the Breakpoint trap (bpt), the Flag
trap (flag) and the Supervisor Call trap (svc).

Absolute value
Integer absolute value (abs) and floating-point absolute value (fabs and
f fabs).

All definitions given in this section are supplied as part of the GNX C compiler package
in the file ns32 000.h.

INTRINSIC FU NC TIO NS 8-3

Single B it Instructions

8.2.1 Single Bit Instructions

PROTOTYPE

typedef int _xbit(int offset,
int *base);

xbit _cbit;
xbit _ibit;
xbit _sbit;
xbit _tbit;
.xbit _cbiti;
xbit _sbiti;

/* clear bit V
/* invert bit */
/* set bit */
/* test bit */
/* clear bit interlocked
/* set bit interlocked */

DESCRIPTION
The cbit, ibit and sbit functions operate on the bit at offset bits from
base. The return value is the original value of the specified bit.
_cbit clears the bit to zero.
_ibit inverts the bit — zero becomes one and vice versa.
_sbit sets the bit to one.
The _tbit function returns the value of the bit residing at offset from base.
The . _cbiti and _sbiti functions operate similarly to the _cbit and _sbit
functions, but in addition they activate the Interlocked Operation output pin on
the CPU. These instructions may be used in multiprocessor systems to interlock
accesses to semaphore bits.
The appropriate instruction version (byte word or double word) is selected by the
compiler according to the type of the actual parameter passed for offset. Cal­
ling the functions as a procedure, such as

(void)_ibit(...

will prevent the compiler from producing the extra code to read the original
value of the bit, and is thus more efficient.

8-4 INTRINSIC FU NC TIO NS

Single Bit Instructions (Cont)

The use of _ tb i t for efficient manipulation of a large bit array is demonstrated
in Appendix E.

INTRINSIC FU NC TIO NS 8-5

ffs (Find First Set)

8.2.2 _ffs (Find First Set)

PROTOTYPE

int _ffsb(unsigned
unsigned

char base,
char *offset);

/* find first set byte */

int _ffsw(unsigned
unsigned

short base,
char *offset);

/* find first set word */

int _ffsd(unsigned
unsigned

int base,
char *offset);

/* find first set double-word */

DESCRIPTION
The ffs routines search for the first set bit in base. The search starts at the
offset specified in the value pointed by offset, and proceeds in ascending order
to the first set bit or to the last bit in base.
The routines return the value of the PSR F flag. If a set bit is found, the value of
the unsigned char pointed by offset is changed to the bit number of the bit
found, and the F flag in the PSR is cleared. If no set bit is found, the unsigned
char pointed by of f set is set to zero and the F flag in the PSR is set to 1.
Calling the functions as a procedure, such as

(void)_ffsw(...

will prevent the compiler from producing the code to read the PSR F flag.
NOTE: The value of the unsigned char pointed by offset must be

within the range 0 to 7 for _f f sb, 0 to 15 for _f fsw and 0
to 31 for _ffsd. Compilation with the -ap option
(/CHECK=PARAMETER on VMS) generates code to check in
run-time for this limitation.

8-6 INTRINSIC FU NC TIO NS

exti (Extract bit-field)

8.2.3 _exti (Extract bit-field)

PROTOTYPE

void _extb(int offset,
void *base,
char *dest,
int length);

void _extw(int offset,
void *base,
short *dest,
int length);

void _extd(int offset,
void *base,
int *dest,
int length);

DESCRIPTION
The ext routines copy the bit-field specified by base, offset and length to
the dest operand. The field is right justified in dest. High-order bits are
zero-filled if the field is shorter than dest or discarded if the field is longer than
dest.

The field starts at bit position
offset % 8

within the memory byte
base + (offset / 8)

INTRINSIC FU NC TIO NS 8-7

exti (Extract bit-field) (Cont)

NOTES: 1. length must be a constant. Otherwise the routine is not
inlined and an emulation function is called.

2. length must be in the range 1 through 32. Compilation
with the -ap option (/CHECK=PARAMETER on VMS) will
generate code to check in run-time for this limitation.

CAUTION
Although a bit-field may contain up to 32 bits, an alignment restriction appears
for fields containing more than 25 bits. A bit-field must be composed of bits from
no more than four contiguous bytes.

If the offset operand is a constant expression with a value in the range 0 to 7,
and length is a constant expression, the compiler will use the short version of
the instruction (exts).

8-8 INTRINSIC FU NC TIO NS

ins (Insert Bit-field)

8.2.4 _ins (Insert Bit-field)

PROTOTYPE

void _ins(int offset,
unsigned int src,
int *base,
int length);

DESCRIPTION
The . _ins routine inserts the src operand into the bit-field specified by base,
offset and length. The contents of src are right-justified in the field.
High-order bits are zero-filled if src is shorter than the field or discarded if
src is longer than the field.
The field starts at bit position

offset % 8

within the memory byte
base + (offset / 8)

length specifies the number of bits in the field.
NOTES: 1. length must be a constant. Otherwise the routine is not

inlined and an emulation function is called.
2. length must be in the range 1 through 32. Compilation

with the -ap option (/CHECK=PARAMETER on VMS) will
generate code to check in run-time for this limitation.

INTRINSIC FU NC TIO NS 8-9

ins (Insert Bit-field) (Cont)

CAUTION
Although a bit-field may contain up to 32 bits, an alignment restriction appears
for fields containing more than 25 bits. A bit-field must be composed of bits from
no more than four contiguous bytes.

If the offset operand is a constant expression with a value in the range 0 to 7,
and length is a constant expression, the compiler will use the short version of
the instruction (inss).
The appropriate version for _ins (insb, insw or insd, for byte, word or
double-word respectively) is selected by the compiler according to the type of the
parameter passed for src.

8-10 INTRINSIC FU NC TIO NS

cvtp (Convert to Bit Pointer)

8.2.5 _cvtp (Convert to Bit Pointer)

PROTOTYPE

int _cvtp(int offset,
void *base);

DESCRIPTION
The _cvtp function returns the absolute bit address of the memory bit specified
by base and offset. The bit address specifies the number of bits from the
first bit in the memory space (bit 0 of the byte at address 0) to the specified bit.
The absolute bit address specified by base and offset is computed as:

base * 8 + offset

INTRINSIC FU NC TIO NS 8-11

roti (Rotate)

8.2.6 _roti (Rotate)

PROTOTYPE

void _rotb(char count,
unsigned char *base);

void _rotw(char count,
unsigned short *base);

void _rotd(char count,
unsigned int *base);

DESCRIPTION
The rot routines perform a rotation shift on base in the manner specified by
count. The sign of count determines the direction of the shift. The absolute
value of count gives the number of bit positions by which to shift base.
A positive count specifies a left shift; a negative count specifies a right shift.
In a rotation, each bit rotated off one end of base is moved to the emptied bit
position at the other end of of base.
NOTE: The value of count must be within the range -7 to 7 for

_rotb, -15 to 15 for _rotw, and -31 to 31 for _rotd. The
value of base will be undefined if count is outside the
specified range. Compilation with the -ap option
(/CHECK=PARAMETER on VMS) generates code to check in
run-time for this limitation.

8-12 INTRINSIC FU N C TIO NS

.movsi (Move String)

8.2.7 _movsi (Move String)

PROTOTYPE

typedef void _move_string(int n_elements,
void *src,
void *dest);

extern _move_string _movsb,
_movsw,
_movsd,
_movsb_b,
_movsw_b,
_movsd_b;

DESCRIPTION
The _move_string routines copy n_elements consecutive elements of the
src string to consecutive element locations in the dest string. The size of the
elements copied by _movsb, _movsw and _movsd are one byte, two bytes or
four bytes respectively. The copy operation starts at addresses src and dest,
and proceeds to elements in higher addresses.
The routines _movsb_b, _xnovsw_b and _movsd_b differ from the correspond­
ing routines in that the operation proceeds to elements in lower addresses.
The _move_string routines are faster than the GNX library routines bcopy
and memcpy, although they are less general.

/* Backward */
/* Backward */
/* Backward */

INTRINSIC FU NC TIO NS 8-13

_movst (Move String Translating Bytes)

8.2.8 _movst (Move String Translating Bytes)

PROTOTYPE

typedef void _movs_translate(
int n_elements,
void *src,
void *dest,
char *translation_table);

typedef int _movs_translate_match(
int n_elements,
void *src,
void *dest,
char *translation_table,
char match_value);

extern

extern

movs.

movs.

translate
_movst,
_movst_b; /* Backwards */

translate_match
_movst_u, /* Until */
_movst_ub, /* Until, backwards
__movst_w, /* While */
_movst_wb; /* While, backwards

*/
*/

DESCRIPTION
The _movst routine copies n_elements consecutive bytes of the src string to
consecutive locations in the dest string, translating each byte using
translation_table.

The copy operation starts at addresses src and dest, and proceeds to elements
in higher addresses.
The translated value to be copied is found by using the byte value read from the
src string as an index into the translation table. The byte value is treated as an
unsigned quantity.

8-14 INTRINSIC FUNC TIO NS

movst (Move String Translating Bytes) (Cont)

The routine _movst_b differs from _movst in that the operation proceeds to
elements in lower addresses.
The function _movst_u operates similary to _movst, except that the copy
operation terminates either when n_elements bytes are copied, or when the
translated value equals match_value.
The function _movst_w operates similary to _movst_u, except that the copy
operation terminates either when n_elernents bytes are copied, or when the
translated value is not equal to match_value.
The functions _movst_ub and _movst_wb differ from _movst_u and
_movst_wb respectively in that the operation proceeds to elements in lower
addresses.
The _movs_translate_match functions return a non-zero value if the opera­
tion terminated due to the match condition, and return zero otherwise.
Calling these routines as procedures, such as

(void)_movst_u(...

will prevent the compiler from producing the code which generates the return
value.

INTRINSIC FU NC TIO NS 8-15

Load and Store of Processor Registers

8.2.9 Load and Store of Processor Registers

PROTOTYPE

void _lpr(char *procreg,

void _spr(char *procreg,

unsigned int

unsigned int

src) ;

*dest);

DESCRIPTION
The _lpr routine copies src to the dedicated register specified by procreg.
The _spr routine stores the contents of the dedicated register in dest.
procreg must be a constant string, containing the name of a dedicated register.
Refer to the Series 32000 GNX-Version 4 Assembler Reference Manual section
4.8 for a dedicated register names list.
In the _lpr routine high-order bits of src are discarded if src is longer than
the register.
In the _spr routine the register contents are right-justified in dest. High-
order dest bits are zero-filled if the register is shorter than dest.
NOTE: Some dedicated registers may only be accessed in supervisor

mode. The routines should access these registers only if
invoked from supervisor mode.

CAUTION
The valid options for procreg depend on the target cpu. The compiler does not
check the validity of the specified register name. Passing an invalid register
name will cause an error during the assembly phase.

8-16 INTRINSIC FU NC TIO NS

Load and Store of Processor Registers (Cont)

8.2.10 Bit Operations on the PSR

PROTOTYPE

void _bicpsrw(unsigned short src);

void _bispsrw(unsigned short src);

DESCRIPTION
The bicpsrw routine clears to zero the bits in the PSR corresponding to the bits
that are set in src. The bispsrw routine sets to one the bits in the PSR
corresponding to the bits that are set in src.
NOTE: These routines affect the high-order byte of the PSR. There­

fore they should be invoked from supervisor mode only.
The GNX header file ns32 000 .h provides macro definitions, for invoking the
routines with the most frequently used parameters. The macros are:

#define _USER_MODE_FLAG 0x100
#define _STACK_FLAG 0x200
#define _TRAP_PENDING_FLAG 0x400
#define _INTPT_ENABLE_FLAG 0x800

#define _interrupt_enable()
#define _interrupt_disable()

bispsrw(_INTPT_ENABLE_FLAG)
bi cps r w (_INTPT_ENABLE_FLAG)

#define _select_user_stack() _bispsrw(_STACK_FLAG)
#define _select_supervisor_stack() _bicpsrw(_STACK_FLAG)

INTRINSIC FU NC TIO NS 8-17

Set Configuration Register

8.2.11 Set Configuration Register

PROTOTYPE

void _setcfg(char *cfglist);

DESCRIPTION
The _setcfg routine loads the Configuration register (CFG), enabling or disa­
bling optional system features.
cfglist must be a constant string. Its contents should comply with the descrip­
tion of the configuration list operand, as described in the the Series 32000
GNX-Version 4 Assembler Reference Manual, section 4.7
NOTE: The _setcfg routine should be invoked from supervisor

mode only.

CAUTION
The validity of possible configuration bits depends on the target cpu. The com­
piler does not check the validity of the configuration specification. Passing an
invalid configuration specification will cause an error during the assembly
phase.

8-18 INTRINSIC FU NC TIO NS

Trap Activating Instructions

8.2.12 Trap Activating Instructions

PROTOTYPE

void _bpt(void);

void _flag(void);

int _svc(int rO, ...);

DESCRIPTION
The _bpt routine activates the Breakpoint trap.
The _f lag routine activates the Flag trap if the F flag in the PSR is set.
The _svc routine activates the Supervisor Call trap. It passes parameters to
the SVC service routine in the general-purpose processor registers. Parameters
are loaded into the registers in ascending order, starting with RO. The value
returned by the svc routine is that placed by the SVC service routine in the
register RO.

INTRINSIC FU NC TIO NS 8-19

abs (Absolute Value)

8.2.13 abs (Absolute Value)

PROTOTYPE

int abs(int val);
double fabs(double val);
float ffabs(float val);

/* integer absolute value */
/* double absolute value */
/* float absolute value */

DESCRIPTION
The abs routines return the absolute value of their parameter val. abs com­
piles into the integer ABS instruction, fabs compiles into the floating-point
ABSL instruction and f fabs compiles into the floating-point ABSF instruction.
These routines differ from the other intrinsic routines: Their names do not begin
with an underscore, and the floating-point versions’ names are not the same as
the assembly mnemonic.
The reason for these differences is that the routines exist in the standard
mathematical library 1 ibm. a, and are declared in the header file math. h.

8-20 INTRINSIC FU NC TIO NS

8.3 CG-Core Intrinsic Functions
The CG-Core microprocessors complements the full instruction set of the Series 32000
processor with special graphics-oriented instructions. These include Bit-aligned Block
Transfer (BITBLT) functions, line drawing, pattern replications and data compression-
expansion. In addition, an interface to an external BITBLT processing unit (BPU)
enables very fast BITBLT operations.
The CG-Core graphic instructions supported by intrinsic functions are:

bband Bit-aligned Block Transfer, 4-direction bitwise AND operation for CRT
applications.

bbfor Bit-aligned Block Transfer, 2-direction FAST OR operation optimized
for printers.

bbor Bit-aligned Block Transfer, general 4-direction OR operation.
bbstod Bit-aligned Block Transfer, 4-direction replace (Source-to-Destination)

operation.
bbxor Bit-aligned Block Transfer, 4-direction XOR operation.
b itw t Bit-aligned Word Transfer, for small BITBLT OR operations.
e x tb lt Drives a 4-direction, 16-function external BITBLT processing unit.

The BPUs supported are the DP8510 or DP8511 for the NS32CG16
CPU, or the on-chip BPU for the NS32CG160.

movinp Move Multiple Pattern, for pattern fill, horizontal line drawing,
memory clear.

sb itp s Set Bit Perpendicular String, for image expansion and
horizontal/vertical/diagonal line drawing.

s b i ts Set Bit String, for image expansion and horizontal line drawing.
t b i t s Test Bit String, for image data compression.

In addition, the general Series 32000 instruction set includes instructions that manipu­
late single bits or bit-fields in memory. These are useful for graphic operations and are
supported by intrinsic functions, as described in Section 8.4.
TERMS AND CONVENTIONS

bit alignment

bit-block

bit ordering

The ability to access any bit in memory. The Series 32000
instruction set and the CG-Core instructions enable efficient
direct access to bit-aligned data.
A rectangular sub-area of an image. A bit-block consists of y lines of x
bits, where the spacing between lines is warp bits.
Bit ordering is from the least significant to the most significant
bit. Bit positions increase left-to-right in the image.

INTRINSIC FU NC TIO NS 8-21

image Images are defined as binary bit-maps, where a set bit (one)
represents a black dot, and a clear bit (zero) represents a white
dot.

left-to-right A graphic operation that traverses memory in increasing
address order (see memory ordering below).

memory ordering The displayed image’s memory increases in a left-to-right, top-
to-bottom raster direction. The first byte represents the
image’s top-left comer. The Series 32000 architecture is
'little-endian" in referring to a word (16 bits) or double-word
(32 bits) — the least significant byte is stored at the lowest
address.

right-to-left A graphic operation that traverses memory in decreasing
address order (see memory ordering above).

shift The shifts in this chapter are Series 32000 logical left bit shifts.
With the imaging convention this results in image bits moving
from left to right.

warp The horizontal width of the image. Also known as raster or
pitch.

All definitions given in this section are supplied as part of the GNX C compiler package
in file cg!6.h.

8-22 INTRINSIC FU NC TIO NS

extblt (External Bit Aligned Block Transfer)

8.3.1 _extblt (External Bit Aligned Block Transfer)

PROTOTYPE

void _extblt(char *src_addr, /* Extblt without preloading */
char *dest_addr,
int adj_width,
int height,
int horiz_incr,
int adj_src_wrap,
int adj_dest_wrap);

void _extbltp(char *src_addr, /* Extblt with preloading */
char *dest_addr,
int adj_width,
int height,
int horiz_incr,
int adj_src_wrap,
int adj_dest_wrap);

PARAMETERS
src_addr

dest_addr

adj_width

height
horiz_incr

The base byte-address of the source data, the value should be
even.
The base byte-address of the destination, the value should be
even.
Adjusted width of the image on which the operation is per­
formed. The adjustment is the width in words of destination
data multiplied by horiz_incr:
(width * horiz_incr)
The number of lines on which the operation is performed.
The horizontal step in bytes for copying. Its value should be
+2 or -2.

adj_src_warp The adjusted wrap of the source.
The adjustment is to the actual source warp in bytes minus
the width in bytes (not the adjusted width) less two:

(source warp - (width in bytes - 2))

INTRINSIC FU N C TIO NS 8-23

_extblt (External Bit Aligned Block Transfer) (Cont)

adj_dest_warp The adjusted wrap of the destination.
The adjustment is the actual destination warp in bytes less
the width in bytes (not the adjusted width) less two:

(destination warp - (width in bytes - 2))

DESCRIPTION
The two extblt functions drive an external BITBLT processing unit (BPU).
The BPUs supported are the DP8510 or DP8511 for the NS32CG16 CPU, or the
on-chip BPU for the NS32CG160. The CPU supplies addresses and bus cycles
while the BPU operates on the data. For more details on the EXTBLT instruc­
tion refer to the NS32CG16 or the NS32CG160 Printer/Display Processor
Programmer’s Reference Supplement.
NOTE: Compilation with the -ap option (/CHECK=PARAMETER on

VMS) will generate code to check in run-time for the follow­
ing:

• "src_addr" and "dest_addr" values are even.
• "horiz_incr" is +2 or -2.
• "width" value is a multiple of "horiz_incr" and has the

same sign.

8-24 INTRINSIC FU NC TIO NS

BITBLT instructions

8.3.2 BITBLT instructions

PROTOTYPE

typedef void _bbfunc(char *src_addr,

_bbfunc _bbfor,
_bbor_s,
_bbor_da,
_bbor_sda,

char *dest_addr,
unsigned char shift_val,
unsigned int height,
unsigned int maskl,
unsigned int mask2,
int adj_src_warp,
int adj_dest_warp,
unsigned short width);

/* plain, fast or */
/* bbor with inverted source */
/* bbor with decreasing addresses */
/* bbor with inverted source and
* decreasing addresses */

_bband,
_bband_s,
_bband_da,
_bband_sda,

/* plain bband */
/* bband with inverted source */
/* bband with decreasing addresses */
/* bband with inverted source and
* decreasing addresses */

_bbxor,
_bbxor_s,
_bbxor_da,
_bbxor_sda,

/* plain bbxor */
/* bbxor with inverted source */
/* bbxor with decreasing addresses */
/* bbxor with inverted source and
* decreasing addresses */

_bbstod,
_bbstod_s,
_bbstod_da,
_bbstod_sda;

/* plain bbstod */
/* bbstod with inverted source */
/* bbstod with decreasing addresses */
/* bbstod with inverted source and
* decreasing addresses */

INTRINSIC FU NC TIO NS 8-25

BITBLT instructions (Cont)

DESCRIPTION
The BITBLT instructions perform a full two-operand, bit-aligned block transfer.
Sixteen intrinsic BITBLT functions are supplied as an interface to these instruc­
tions. They are divided into four groups, according to the operator between the
source and destination bits: _bbor for an OR operator, _bband for an AND
operator, _bbxor for a XOR operator, and _bbstod for a source to destination
copy, which overwrites the destination bits.
Within each group there are four variants, resulting from the combination of:

• The direction of the transfer — increasing or decreasing addresses.
Increasing addresses indicate a left-to-right operation; decreasing
addresses indicate a right-to-left operation.

• The reading of the source data — with or without inversion. The inversion
is a logical negation of each source bit.

A separate intrinsic function is supplied for each combination of variants. These
are coded as suffixes to the function names. The suffixes are _s for inverted
source, _da for decreasing addresses, and _sda for inverted source and
decreasing addresses. No suffix signifies a simple version of the function (i.e. no
source inversion, increasing addresses). There are therefore 16 different
BITBLT functions, as shown in the table below:

Operator plain inverted
source

decreasing
addresses

inverted source and
decreasing addresses

AND _bband _bband_s _bband_da _bband_sda
OR _bbfor _bbor_s _bbor_da _bbor_sda

XOR _bbxor _bbxor_s _bbxor_da _bbxor_sda
STOD _bbstod _bbstod_s _bbstod_da _bbstod_sda

NOTE: No plain bbor function is supplied since the CG-Core
bbf or instruction has the same functionality with faster per­
formance.

A bottom-to-top BITBLT operation can be performed by giving negative source
and destination warp values, and beginning from the bottom line of the image.
Thus, combined with the _da option, the BITBLT functions can manipulate
blocks of data beginning in any of its four comers.
All functions have the prototype given above. The parameters are the same as
the instruction operands with the following meanings:

8-26 INTRINSIC FU NC TIO NS

BITBLT instructions (Cont)

• src_addr is the base byte-address of the source bit-block
• dest_addr is the base byte-address of the destination.
• height is the vertical size of the bit-block, which specifies the number of

lines to be transferred.
• width is the horizontal size of the transferred bit block. It is the number of

whole words on one line containing the bit-block.
• maskl and mask2 are bit masks "protecting" those bits at the left and right

of the source word block that do not belong to the bit-block from affecting the
bits in the destination block. A bit set to one means that this bit should not
be protected. A clear bit means that this bit should not affect the destination
bit.
The upper 16 bits of the mask parameters must be clear, otherwise behavior
is undefined. Compilation with the -ap compiler option
(/CHECK=PARAMETER on VMS) will generate code to check in run-time for
this condition.

• shift_val contains the difference between the bit offsets of the source and
destination bit-blocks, relative to the word block:

shift_val = destination bit offset - source bit offset

shift_val must be positive. src_addr and dest_addr may need to be
adjusted to ensure this.

• adj_src_warp describes the adjusted source warp. For left-to-right opera­
tions the source warp must be adjusted to:

adj_src_warp = source warp - 2 * (width - 1)

For right-to-left operations the source warp must be adjusted to:
adj_src_warp = source warp + 2 * (width - 1)

• adj_dest_warp describes the adjusted destination warp. For left-to-right
operations the destination warp must be adjusted to:

adj_dest_warp = destination warp - 2 * (width - 1)

For right-to-left operations the destination warp must be adjusted to:
adj_dest_warp = destination warp + 2 * (width - 1)

INTRINSIC FU NC TIO NS 8-27

BITBLT instructions (Cont)

For more details about the BITBLT instructions refer to the appropriate CG-core
Processor Programmer’s Reference Supplement.

8-28 INTRINSIC FUNC TIO NS

bitwt (Bit Aligned Word Transfer)

8.3.3 Jbitwt (Bit Aligned Word Transfer)

PROTOTYPE

void _bitwt(unsigned short **src_addr,
unsigned **dest_addr,
int shift_val);

DESCRIPTION
The . _bitwt function performs a bit-aligned transfer of a short int. The 16 bits
of data at * *src_addr are read, zero extended to an unsigned int and shifted to
the left by the number of bit positions specified in shif t_val. The 32 bits of
data at **dest_addr are read, ORed with the shifted source and the result is
written into **dest_addr. Then *src_addr and *dest_addr are incre­
mented by two to point to the next shorts to be operated on ((byte *) incre­
menting).

NOTE: shift_val must be in the range of 0 to 15. Compilation
with the -ap option (/CHECK=PARAMETER on VMS) will gen­
erate code to check in run-time for this limitation.

The . Joitwt function is useful for implementing a high-speed "source OR desti­
nation" BITBLT operation, when the source data is aligned such that it does not
need masking The implementation consists of a simple loop containing the
_bitwt function and add instructions that adjust the source and destination
warps.

INTRINSIC FU NC TIO NS 8-29

_movmp (Move Multiple Pattern)

8.3.4 _movmp (Move Multiple Pattern)

PROTOTYPE

void _movmpb(void *dest_addr,
int incr,
unsigned count,
unsigned char pattern);

void _movmpw(void *dest_addr,
int incr,
unsigned count,
unsigned short pattern);

void _movmpd(void *dest_addr,
int incr,
unsigned count,
unsigned int pattern);

DESCRIPTION
The _movmpb function copies count times the byte specified by the pattern
parameter to *dest_addr. Each count is spaced incr bytes from the previ­
ous one. Only the low order byte of pattern will be copied, if a pattern
parameter larger than a byte is passed.
Similarly, the _movmpw function copies the word pattern. The incr is in
units of bytes. If a double-word pattern parameter is passed, only its low
order word will be copied. If a byte pattern parameter is passed, it will be
zero-extended.
_movmpd copies the double-word pattern. If a byte or word pattern parame­
ter is passed, it will be zero-extended.
This function is useful for quickly clearing large memory blocks. For example, in
printer applications a page image can be cleared prior to drawing the next page.
The _movmp function can also be used for drawing horizontal lines and for
creating simple patterns.

8-30 INTRINSIC FU NC TIO NS

,movmp_upd (Move Multiple Pattern With Update)

8.3.5 _movmp_upd (Move Multiple Pattern With Update)

PROTOTYPE

void _movmpb_upd(void **dest_addr,
int incr,
unsigned count,
unsigned char pattern);

void _movmpw_upd(void **dest_addr,
int incr,
unsigned count,
unsigned short pattern);

void _movmpd_upd(void **dest_addr,
int incr,
unsigned count,
unsigned int pattern);

DESCRIPTION
The _movmp_upd functions operate like the _movmp functions. The only differ­
ence is that dest_addr is a pointer to a variable containing the address to
which the first copy operation is to be made. The function sets this variable to
the value determined by the expression

*dest_addr + incr * count
where *dest_addr, incr and count are the initial values of the respective
variables.
The _movmpb_upd function copies the byte specified by the pattern parameter
to *dest_addr, count times in incr bytes spacing.
Similarly, the _movmpw_upd function copies the word pattern to dest_addr in
incr bytes spacing.
_movmpd_upd function copies the double-word pattern to dest_addr in incr
bytes spacing.

INTRINSIC FU NC TIO NS 8-31

sbits (Set Bit String)

8.3.6 _sbits (Set Bit String)

PROTOTYPE

int _sbits(void *dest_addr,
int bit_offset,
unsigned run_length,
unsigned *lookup_table);

DESCRIPTION
The _sbits function operates on run_length consecutive bits, starting with
the bit at bit_of f set from the byte at *dest_addr. run_length must be
in the range 0 to 25. An OR operation is performed between these bits and a
double-word from lookup_table. The double-word used is

lookup_table[run_length + 32*(bit_offset % 8)]

The function returns zero if run_length is 25 or less, and returns one if
run_length is 26 or greater. Calling the functions as a procedure, such as

(void)_sbits(...

will prevent the compiler from producing the code for the return value.
The lookup_table parameter is used to lookup any table. The Sbits macro
is an interface to the most common "black" lookup table (all bits in the run will
be set). This lookup table is provided in the libctp.a archive. The prototype
for the Sbits macro is:

#define _Sbits(addr,offset, length) \
_sbits((addr), (offset), (length),_sbits_tbl)

extern unsigned _sbits_tbl[];

8-32 INTRINSIC FU NC TIO NS

sbits (Set Bit String) (Cont)

8.3.7 _sbitps (Set Bit Perpendicular String)

PROTOTYPE

void _sbitps(void *src_addr,
int *bit_offset,
int run_length,
int dest_warp);

DESCRIPTION
The _sbitps function sets run_length bits, starting at the bit at
*bit_offset from the byte at *src_addr. The set bits are separated by
dest_warp bits.
The function can be used to draw vertical lines by passing dest_warp equal to
the image warp. Forty-five degree lines are drawn by dest_warp equal to the
image warp plus or minus one. Other applications include expansion and/or
rotation of images (in conjunction with the _tbits function) and filling.

INTRINSIC FU NC TIO NS 8-33

tbits (Test Bit String)

8.3.8 _tbits (Test Bit String)

PROTOTYPE

int _tbitsO(void *src_addr,
int *bit_offset,
int *run_length,
int max_run_length,
int max__bit_offset,
unsigned int *Lflag);

int _tbitsl(void *src_addr,
int *bit_offset,
int *run_length,
int max_run_length,
int max_bit_offset,
unsigned int *Lflag);

/* count a series of zeros *

/* count a series of ones */

DESCRIPTION
The _tbitsO function counts the number of consecutive clear bits, starting
from the bit at *bit_of fset from the byte at src_addr. Counting will ter­
minate either at the first set bit, or if max_run_length or max_bit_of f set
bits were tested before a set bit was found. The number of bits scanned will be
placed in *run_length, and *bit_of f set will be the offset upon termination.
Similarly, _tbitsl counts the number of consecutive set bits.
Both functions return the value of the PSR F flag. Calling the functions as a
procedure, such as

(void)_tbitsl(. . .

will prevent the compiler from producing the code for the return value.
The value of the PSR L flag is placed in the Lf lag parameter. Calling the func­
tions with the macro IGNORE_PARAM (defined in the cgl6.h) as the actual
Lf lag parameter will prevent the compiler from producing the code for assign­
ing the value of the PSR L flag.

8-34 INTRINSIC FUNC TIO NS

tbits (Test Bit String) (Cont)

Table 8-1. Effect of tbits on PSR L and F flags

CONDITION L F NOTES
*run_length < max_run_length

bit found
1 F F reflects last

bit tested
*run_length >= max_run_length

bit not found
1 F F reflects last

bit tested
*bit_offset >= max_bit_offset

bit not found
0 F F reflects last

bit tested
*bit_offset >= max_bit_offset

on entry
0 0/1 0 for _tbits0

1 for _tbitsl

INTRINSIC FU NC TIO NS 8-35

8.4 NS32GX320 Intrinsic Functions
The NS32GX320 high-performance 32-bit microprocessor combines the full instruction
set of the Series 32000 family with the following on-chip integrated features: instruc­
tion and data caches, a 2-channel DMA controller, a 15-level interrupt control unit
(ICU) and three 16-bit timers. In addition, Digital Signal Processing is supported by
four special instructions:

mulwd Multiply Word to Double
emu 1 d Complex Multiply Double
cmacd Complex Multiply and Accumulate Double
maetd Multiply and Accumulate Twice Double

These instructions are accessible from the GNX C compiler using the special
NS32GX320 intrinsic routines.
All prototype definitions given in this section are supplied as part of the GNX C pack­
age in the file gx3 2 0 . h.

8-36 INTRINSIC FU NC TIO NS

NS32GX320 typedefs

8.4.1 NS32GX320 typedefs
WCOMPLEX and DCOMPLEX are typedefs, defined for cmuld and cmacd. They desig­
nate data types for fixed-point complex arithmetic.

typedef struct WCOMPLEX {
short re;
short im;

} WCOMPLEX;

typedef struct DCOMPLEX {
long re;
long im;

} DCOMPLEX;

SHORT2 is a typedef, defined for mactd.

typedef struct SHORT2 { /* for mactd */
short si;
short s2;

} SHORT2;

INTRINSIC FUNCTIONS 8-37

mulwd (Multiply Word to Double)

8.4.2 _mulwd (Multiply Word to Double)

PROTOTYPE

void _mulwd(short srcl, int* src2);

DESCRIPTION
The _mulwd function assigns the integer multiplication of srcl operand, by
the lower 16 bits of *src2 to *src2.

8-38 INTRINSIC FUNC TIO NS

cmuld (Complex Multiply Double)

8.4.3 _cmuld (Complex Multiply Double)

PROTOTYPE

void _cmuld(WCOMPLEX srcl,
WCOMPLEX src2,
DCOMPLEX *result);

DESCRIPTION
The _cmuld function assigns the complex multiplication of the source parame­
ters (srcl and src2)to *result, i.e.:

result->re = srcl.re*src2. re - srcl.im*src2. im
result->im = srcl.re*src2.im + srcl.im*src2. re

INTRINSIC FU NC TIO NS 8-39

_cmacd (Complex Multiply and Accumulate Double)

8.4.4 _cmacd (Complex Multiply and Accumulate Double)

PROTOTYPE

void _cmacd(DCOMPLEX *accum,
WCOMPLEX srcl,
WCOMPLEX src2);

DESCRIPTION
The _cmacd function accumulates the complex multiplication of the source
parameters (srcl and src2)into *accum, i.e.:

accum->re = accum->re + srcl.re*src2. re - srcl.im*src2.im
accum->im = accum->im + srcl.re*src2.im + srcl.im*src2. re

8-40 INTRINSIC FU NC TIO NS

mactd (Multiply and Accumulate Twice Double)

8.4.5 _mactd (Multiply and Accumulate Twice Double)

PROTOTYPE

void _mactd(int *accum,
SH0RT2 srcl,
SH0RT2 src2);

DESCRIPTION
The _mactd function accumulates the result of the two multiplications of
srcl. sl*src2 . si and srcl. s2*src2 . s2 into *accum, i.e.:

*accum = *accum + srcl.sl*src2. si + srcl.s2*src2.s2

INTRINSIC FU NC TIO NS 8-41

Appendix A
SERIES 32000 STANDARD CALLING CONVENTIONS

A.l INTRODUCTION
The main goal of standard calling conventions is to enable the routines of one program
to communicate with different modules, even when written in multiple programming
languages. The Series 32000 standard calling conventions support various special
language features (such as the ability to pass a variable number of arguments, which is
allowed in C), by using the different calling mechanisms of the Series 32000 architec­
ture. These conventions are employed only to call “externally visible” routines. Calls
to internal routines may employ even faster calling sequences by passing arguments in
registers, for instance.
Basically, the calling sequence pushes arguments on top of the stack, executes a call
instruction, and then pops the stack, using the fewest possible instructions to execute
at the maximum speed. The following sections discuss the various aspects of the
Series 32000 standard calling conventions.

A.2 CALLING CONVENTION ELEMENTS
Elements of the standard calling sequence are as follows:

• The Argument Stack
Arguments are pushed on the stack from right to left; therefore, the leftmost
argument is pushed last. Consequently, the leftmost arguments are always at
the same offset from the frame pointer, regardless of how many arguments are
actually passed. This allows functions with a variable number of arguments to be
used.
NOTE: This does not imply that the actual parameters are always

evaluated from right to left. Programs cannot rely on the
order of parameter evaluation.

The run-time stack must be aligned to a full double-word boundary. Argument
lists always use a whole number of double-words; pointer and integer values use a
double-word (by extension, if necessary), floating-point values use eight bytes and
are represented as long values;
structures/unions use a multiple of double-words.

SERIES 32000 STANDARD CALLING C O NVENTIONS A -l

NOTE: Stack alignment is maintained by all GNX — Version 4 com­
pilers through aligned allocation and de-allocation of local
variables. Interrupt routines and other assembly-written
interface routines are advised to maintain this double-word
alignment.

The caller routine must pop the arguments off the stack upon return from the
called routine.

NOTE: The compiler uses a more efficient organization of the stack
frame if the -OF (FIXED_FRAME in VMS) optimization is
enabled. In that case, programs should not rely on the organi­
zation of the stack frame.

• Saving Registers
General registers RO, Rl, and R2 and floating registers F0, Fl, F2, and F3 are
temporary or scratch registers whose values may be changed by a called routine.
Also included in this list of scratch registers is the long register LI of the
NS32181/NS32381/NS32580 FPU. It is not necessary to save these registers on
procedure entry or restore them before exit. If the other registers (R3 through
R7, F4 through F7, and L3 through L7 of the NS32181/NS32381/NS32580) are
used, their values should be saved (onto the stack or in other memory locations)
by the called routine immediately upon procedure entry and restored just before
executing the return instruction. This should be performed because the caller
routine may rely on the values in these registers not changing.
NOTE: Interrupt and trap service routines are required to

save/restore all registers that they use. If the service routine
calls another routine it must save scratch registers as well.

• Returned Value
An integer or a pointer value that returns from a function, returns in (part of)
register RO.
Floating-point values return in floating point registers: A float value is
re turned in register F0. A double value is returned in register pair F0-F1.
If a function returns a structure or union, the calling function passes an addi­
tional argument at the beginning of the argument list. This argument points to
where the called function returns the structure. The called function copies the
structure into the specified location just before returning from the function. Note
that functions that return such types must be correctly declared as such, even if
the return value is ignored. For details see Chapter 4.

A-2 SERIES 32000 STANDARD CALLING C O NVENTIONS

Example:
int iglob;
m ()
{

int loc;
iglob = ifunc(loc);

}
ifunc(pi)
int pi;{

int i, j , k;
j = 0;
for (i = 1; i <= pi; i++)

j = j + f (i) ;
return(j);

}

The compiler may generate the following code:

ifunc:

. LL2 :

. LLl:

enter [] ,4 # Allocate local variable
movd -4 (fp),tos # Push argument
bsr _ifunc
adj spb $ (-4) # Pop argument off stack
movd r0,_iglob # Save return value
exit []
ret $ (0)

enter [r3,r4,r5],0 # Save safe registers
movd 8 (fp),r5 # Load argument to temp register
movqd $(0),r4 # Initialize j
cmpqd $(1),r5
bgt .LLl
movqd $(1) ,r3 # Initialize i

movd r3,tos # Push argument
bsr _f
adj spb $(-4) # Pop argument off stack
addd rO , r4 # Add return value to j
addqd $(1),r3 # Increment i
cmpd r3,r5
ble . LL2

movd r4 , rO # Return value
exit [r3,r4,r5] # Restore safe registers
ret $ (0)

SERIES 32000 STANDARD CALLING CONVENTIONS A-3

After the enter instruction is executed by ifunc (), the stack will look like this:
HIGH MEMORY

caller’s stack frame
callee’s stack frame

< -- fp

< — sp

LOW MEMORY

loc

value of loc
return address

saved fp
saved r3
saved r4
saved r5

A-4 SERIES 32000 STANDARD CALLING CONVENTIONS

Appendix B
MIXED-LANGUAGE PROGRAMMING

B.l INTRODUCTION
Mixed-language programs are frequently used for a couple of reasons. First, one
language may be more convenient than another for certain tasks. Second, code sec­
tions, already written in another language (e.g., an already existing library function),
can be reused by simply calling them.
A programmer who wishes to mix several programming languages needs to be aware of
subtle differences between the compilation of the various languages. The following sec­
tions describe the issues the user needs to be aware of when writing mixed-language
programs and then compiling and linking such programs successfully.

B.1.1 Writing Mixed-Language Programs
The mixed-language programmer should be aware of the following topics:

• Name Sharing - Potential conflicts including permitted name-lengths, legal
characters in identifiers, compiler case sensitivity, and high-level to assembly-
level name transformations.

• Calling Conventions - The way parameters are passed to functions, which
registers must be saved, and how values are returned from functions. See Appen­
dix A for details.

• Declaration Conventions - The demands that different languages impose
when referring to an outside symbol (be it a function or a variable) that is not
defined locally in the referring source file. Note that this is also true of references
to an outside symbol that is not in the same language as that of the referring
source file.

To help the programmer avoid these potential problems, a set of rules for writing
mixed-language programs has been devised. Each rule consists of a short mnemonic
name (for easy reference), the audience of interest for the rule, and a brief description
of the rule.
Figure B-l summarizes all of the rules in the context of each possible cross-language
pair.

M IXED-LANGUAGE PROGRAMMING B -l

C Pascal FORTRAN 77 Series 32000
Assem bly

Series 32000
Assem bly

prefix prefix
include ext
case sensitivity

prefix
suffix

ref args
case sensitivity

FORTRAN 77 suffix
ref args
case sensitivity

suffix
include ext
ref args

prefix
suffix

ref args
case sensitivity

Pascal include ext
case sensitivity

suffix
include ext
ref args

prefix
include ext
case sensitivity

C include ext
case sensitivity

suffix
ref args
case sensitivity

prefix

Figure B-l. Cross-Language Pairs

RULE 1 case sensitivity
This rule is of interest to every programmer who mixes programming
languages.
C and Series 32000 assembly are case sensitive while FORTRAN 77
and Pascal are not. Programmers who share identifiers between these
two groups of languages must take this into account. To avoid prob­
lems with case sensitivity, the programmer can:

1. Take care to use case-identical identifiers in all sources and com­
pile FORTRAN 77 and Pascal sources using the case-sensitive
option (/CASE_SENSITIVE on VMS, -d on UNIX).

2. Use only lower-case letters for identifiers which are shared with
FORTRAN 77 or Pascal since the FORTRAN 77 and Pascal com­
pilers fold all identifiers to lower-case if not given the case-
sensitive option.

RULE 2 prefix
This rule is of interest to those who mix high-level languages with
assembly code.

B-2 M IXED-LANGUAGE PROGRAMMING

R U L E 3

R U L E 4

All compilers map high-level identifier names into assembly symbols
by prepending these names with an underscore. This ensures that
user-defined names are never identical to assembly reserved words.
For example, a high-level symbol NAME, which can be a function name,
a procedure name, or a global variable name, generates the assembly
symbol _NAME.
Assembly written code which refers to a name defined in any high-
level language should, therefore, prepend an underscore to the high-
level name. Stated from a high-level language user viewpoint, assem­
bly symbols are not accessible from high-level code unless they start
with an underscore.

suffix
This rule is of interest to those who mix FORTRAN 77 with C, Pascal,
or assembly code.
The FORTRAN 77 compiler appends an underscore to each high-level
identifier name (in addition to the action described in RULE 2). The
reason for an appended underscore is to avoid clashes with standard-
library functions that are considered part of the language, e.g., the
FORTRAN 77 WRITE instruction. For example, a FORTRAN 77
identifier NAME is mapped into the assembly symbol _NAME_.
Therefore, a C, Pascal, or assembly program that refers to an FOR­
TRAN 77 identifier name should append an underscore to that name.
Stated from an FORTRAN 77 user viewpoint, it is impossible to refer
to an existing C, Pascal, or assembly symbol from FORTRAN 77 unless
the symbol terminates with an underscore.
ref args
This rule is of interest to those who mix FORTRAN 77 with other
languages.
Any language which passes an argument to a FORTRAN 77 routine
must pass its address. This is because a FORTRAN 77 argument is
always passed by reference, i.e, a routine written in FORTRAN 77
always expects addresses as arguments.
Routines not written in FORTRAN 77 cannot be called from an FOR­
TRAN 77 program if the called routines expect any of their arguments
to be passed by value. Only routines which expect all their arguments
to be passed by reference can be called from FORTRAN 77.
The Pascal program must declare all FORTRAN 77 routine arguments
using var. C programs must prepend the address operator & to FOR­
TRAN 77 routine arguments in the call. The C or Pascal programmer

MIXED-LANGUAGE PROGRAMMING B-3

who wants to pass an unaddressable expression (such as a constant) to
a FORTRAN 77 routine, must assign the expression to a variable and
pass the variable, by reference, as the argument.

RULE 5 include ext
This rule is of interest to Pascal programmers who want to share vari­
ables between different source files which may or may not be written
in Pascal.
Pascal sources which share global variables or routines must make
these variables known to separately compiled modules. This is done by
the import and export attributes, or by inclusion of a .h file which
contains the variables or routines. ERROR in line number 290
incorrect number of fields line is: .iflCTascal’See The S e r ie s 3 2 0 0 0
G N X -V ers io n 4 P a sc a l O p tim iz in g C o m p ile r R eferen ce M an u a l.
E R R O R lin e 2 9 2 c o n ta in s a . N o m a tc h in g

In a d d i t io n to th ese ru les, a fe w p o in ts sh o u ld be n o ted . F irs t, G N X —
V ersion 4 F O R T R A N 77 a llo w s id e n tif ie rs lon g er th a n th e s ix ch a ra c te r
m a x im u m o f tr a d i tio n a l F O R T R A N co m p ile rs . S eco n d , th e fa m ily o f
G N X — V ersion 4 C o m p ile rs a llo w s th e use o f u n d ersco res in
iden tif ie rs . B o th o f th ese en h a n cem en ts s im p lify n a m e sh a r in g .

Importing Routines and Variables
The general conventions of all languages must be kept in mixed-language programs.
In particular, externals must be declared in those program sections which import them.
The following are examples of declarations of external (imported) functions/procedures
and external (imported) variables in each language. The examples are in the form:

caller language: ex te rn a l (im p o r te d) fu n c tio n s /p ro c e d u re s
or

ex tern a l (im p o r te d) v a r ia b le s

Example:
C: extern

or
int func_();

extern int var_name_

Note that the strict reference C model (ANSI C standard) is
assumed. If the model is relaxed, then the external declarations
are not mandatory.

FORTRAN 77: INTEGER func
or

COMMON /var_name/ local_name

Pascal . h file: function func_ : integer ; external;
B-4 M IXED-LANGUAGE PROGRAMMING

Pascal . h file:
import/export
Series 32000:

assembly

procedure proc_ ; external;
or

#include "var_def.h"

where the file var_def .h contains:
var var_name_ : integer;

import function func_ : integer;
var export i: integer;

.globl _func_
or

.globl _var_name_

B.1.2 Compiling Mixed-Language Programs
After writing different program parts in different languages, keeping in mind the rules
previously mentioned, the mixed-language programmer must still link and load these
parts to make them run successfully. The following three points should be mentioned
in conjunction with the successful linking and loading of programs.

• External library (standard or nonstandard) routines must be bound with the
user-written code that calls them.

• Initialization code which arranges to pass program parameters to the main pro­
gram and then calls the main program, sometimes has to be bound with user-
written code.

• The entry point of the code, i.e., the location where the program starts executing,
should be determined.

Libraries:
The following table (Table B-l) lists libraries associated with each compiler. When pro­
gramming with mixed languages, the libraries associated with the languages used
must be bound with the program during the link phase of compilation.
Initialization code and Entry-points:
Normally, the entry point of the final executable file is called start. The code that
follows this entry-point is an initialization code that prepares the run-time environ­
ment and arranges parameters to be passed to the user-written main program The
initialization object file which is linked by default is called crt 0 . o. The crtO . o file
always calls _main.
The assembly-symbol that starts the user main program is _main (the underscore is
prepended by the C compiler) in the case of C programs and _MAIN__in Pascal or
FORTRAN 77 programs.

MIXED-LANGUAGE PROGRAMMING B-5

Table B-l. Compilers and their Associated Libraries

COMPILER (DRIVER) NAME LIBRARIES
cc (cross nmcc)
f77 (cross nf77)
pc (cross nmpc)

libc
libF77, libI77, libm, libc
libpas, libm, libc

Note that the last two compilers completely ignore the user’s main program name.
Therefore, in C, the user-written code is called directly from crtO . o. In Pascal and
FORTRAN 77, _main is located in the respective standard library which performs
additional initializations before calling the user entry-point _MAIN__.

B.1.3 Compilation on UNIX Operating Systems
National Semiconductor’s GNX tools (assembler, linker, etc.) on UNIX systems relieve a
user’s concern about external libraries, initialization code, and entry-points. This is
due to the coherence and consistency of the GNX — Version 4 Compilers and their
integration through the use of a common driver.
When using a GNX — Version 4 Compiler on a UNIX system, the user does not directly
call the compiler front end, optimizer, code generator, assembler or linker. Instead, the
calls are indirectly made through the driver program.
The driver program accepts a variable number of filename arguments and options and
knows how to identify language-specific options. The driver also identifies the
languages in which its filename arguments are written by the names of these argu­
ments. Therefore, the driver can arrange to compile and bind the programs with the
needed libraries in order to run the program successfully.
The driver program used by C, Pascal and FORTRAN 77 programmers is exactly the
same program on UNIX systems, named differently for each language. The respective
driver names are cc, pc and f77 (nmcc, ninpc and nf 77 for cross-support).
The driver program looks at its own name in order to determine the libraries that are
to be bound with the program. In addition, the driver links additional libraries accord­
ing to the name extensions of any of its filename arguments. For instance, cc also
links libm and libpas when one of the filename arguments is a Pascal source (recog­
nized by the .p, .pas, . P or . PAS extensions).

B-6 M IXED-LANGUAGE PROGRAMMING

The -v (/VERBOSE on VMS) option of the driver verbosely outputs all driver actions.
With this option the interested user can track problems that might arise (such as
undefined symbols from the linker).
As mentioned in the previous section, different languages use different initialization
codes that reside in language-specific standard libraries. It is necessary that the
correct language initialization code be linked with a mixed-language program. The
driver program helps do this, but it needs to know in which language the main pro­
gram is written.
To ensure that the correct initialization code is linked with a mixed-language program,
the user should call the driver that corresponds to the language of the main program
module within the mixed-language program.
For example, suppose there are four source modules written in four different languages
(c_utils . c written in C, f_utils . f written in FORTRAN 77, p_utils .p written
in Pascal, and s_utils . s written in assembly language), and there is a fifth module
that has already been compiled separately (ob j . o, an object module). Assuming there is a main program written in FORTRAN 77, the f 77 driver should be used.

f7 7 m a i n . f c _ u t i l s . c f _ u t i l s . f p _ u t i l s . p s _ u t i l s . s o b j . o

If the main program is written in C, cc is used, and so on.

B.1.4 Compilation on VMS Operating Systems
Under the GNX tools on VMS systems, the linking phase is separate from the compila­
tion phase; therefore, it demands separate actions from the user.
The interested user should refer to the language tools manuals (assembler, linker, etc.)
for a complete description of how to use them on VMS systems.

B.2 COMPILING THE MIXED-LANGUAGE EXAMPLE
The example listed in Section B.3 consists of a number of program modules written in
languages different from the main program which is written in C.

B.2.1 Compiling the Example on a UNIX System
To compile the program modules on a UNIX system, type the command:

nmcc c _ m a i n . c \

c _ f u n . c f 7 7 _ f u n . f p a s _ f u n . p a s m _ f u n . s

This assumes that all the program modules are in the same directory. If the program
compiles and links successfully, the result is an executable file that, when run, prints

M IXED-LANGUAGE PROGRAMMING B-7

the line “P a sse d OK ! ! !”.

B.2.2 Compiling the Example on a VMS System
To compile the modules on a VMS system, type the following commands:

nmcc c _ m a i n . c
nmcc c _ f u n . c
n f 77 f 7 7 _ f u n . f
nmpc p a s _ f u n . p
nasm a s m _ f u n . s

After successful linking, the result is an executable file that, when rim, prints the line
“Passed OK ! ! !”.

B.3 PROGRAM MODULE LISTINGS
The different program modules are listed in this section.

B-8 M IXED-LANGUAGE PROGRAMMING

c_mam.c

r
E xam ple o f a C p rogram w h ic h c o m m u n ic a te s w i t h C, P a s c a l ,
F o r t r a n 7 7 , and A sse m b ly e x t e r n a l f u n c t i o n s , v i a d i r e c t
c a l l s a s w e l l a s v i a a g l o b a l v a r i a b l e .
P a r a m e te r p a s s i n g by r e f e r e n c e i s a c c o m p l is h e d by p a s s i n g t h e
a d d r e s s e s o f t h e c h a r a c t e r s v a r i a b l e s ' a ' , ' b ' , ' C , ' a nd ' e ' .
---*/

c h a r s t r _ [] = " P a sse d OK ! ! ! 0 ; g l o b a l (' e x p o r t e d ') s t r i n g

m a in () {
c h a r a , b , c , d , e ;
i n t t h r e e = 3 ; / * FORTRAN m u st g e t i t s p a r a m e te r s b y r e f e r e n c e

So we p u t t h i s c o n s t a n t i n t o a v a r i a b l e . . . * /

)

i f c _ f u n c (&a. 0) Sc Sc / * in C a r r a y s s t a r t w i t h 0
p a s _ f u n c (&b, 2) Sc Sc / * in P a s c a l t h e y s t a r t a t
f7 7 _ fu n c _ (& c , & th re e) Sc Sc /* in t i l , a t 1
a sm _ fu n c (&e, 4)) /* in a s s e m b ly , a t 0

p r i n t f (”%c%c%c%c%c%s", a , b , c , d , e , s t r _ + 5) ;
/ * S h o u ld p r i n t " P a sse d OK I I !" * /

//*/*/

dummy (){}

M IXED-LANGUAGE PROGRAM M ING B-9

c_fun.c

(■ \
/ *★

★ D e c l a r a t i o n o f t h e p u b l i c c h a r a c t e r s t r i n g ' s t r [] ' an d d e f i n i t i o n
o f t h e C f u n c t i o n ' c _ f u n c () ' .★ N o te t h e a p p e n d in g o f an u n d e r s c o r e t o t h e e x t e r n a l sy m b o l ' s t r _ '★ w h ic h i s s h a r e d w i t h FORTRAN 7 7 .

* /
e x t e r n c h a r s t r _ [] ;
i n t c _ f u n c (c _ p t r , in d e x)
c h a r * c _ p t r ;
i n t in d e x ;
{

* c _ p t r = s t r _ [i n d e x] ;
r e t u r n 1;

}

___)

f77_fun.f

f N
C
C
c

The FORTRAN 77 f u n c t i o n :
c A l l p a r a m e te r s a r e p a s s e d b y r e f e r e n c e
c
c

The COMMON s t a t e m e n t a l i a s e s t h e e x t e r n a l a r r a y ' s t r ' a s ' t e x t '
LOGICAL FUNCTION f 7 7 _ f u n c (c , in d e x)
CHARACTER c
INTEGER in d e x
COMMON / s t r / t e x t
CHARACTER t e x t (1 5)
c = t e x t (i n d e x)
f 7 7 _ f u n c = .TRUE.
RETURN
END

L _ _______ J

B -10 M IXED-LANGUAGE PROGRAMMING

pas_fun.p

(N
(*

* T h e P a s c a l f u n c t i o n ' p a s _ f u n c () '*)
(* ’ s t r [] ' c h a r a c t e r - a r r a y d e c l a r a t i o n *)

i n c l u d e “s t r _ p a s . h ";

(* m a k e t h i s f u n c t i o n v i s i b l e t o o u t s i d e r s (' e x p o r t ') *)
f u n c t i o n p a s _ f u n c (v a r c : c h a r ; i n d e x : i n t e g e r) : b o o l e a n ; e x t e r n a l ;

f u n c t i o n p a s _ f u n c () ;
b e g i n

c := s t r _ [i n d e x) ;
p a s _ f u n c := TRUE;

e n d ;

V___)

str_pas.h

M IXED-LANGUAGE PROGRAMMING B - l l

asm_fun.s

(\
#
The 3 2 0 0 0 A sse m b ly L a n gu a ge F u n c t io n 'a s m _ fu n c '#
The f u n c t i o n i n c l u d e s an a r t i f i c i a l u s e o f r 7 , t o d e m o n s t r a t e t h e
n e e d t o s a v e i t u p o n e n t r y a n d r e s t o r e u p o n e x i t , a s o p p o s e d t o
rO, r l an d r 2 ; fO , f l , f 2 and f3 w h ic h c a n b e u s e d f r e e l y w i t h o u t
s a v in g o r r e s t o r i n g . T h is i s a c c o r d in g t o t h e S e r i e s 3 2 0 0 0
s t a n d a r d c a l l i n g c o n v e n t i o n .
The f u n c t i o n r e t u r n v a lu e i s p l a c e d in rO, a l s o a c c o r d in g t o t h e
s ta n d a r d c a l l i n g c o n v e n t i o n .#

. g l o b l _ s t r _ # I m p o r t t h e g l o b a l s t r [] a r r a y .

. g l o b l _ a sm _ fu n c # E x p o r t (make v i s i b l e) t h e a s s e m b ly f u n c t i o n ,

. a l i g n 4

_ a s m _ fu n c :
e n t e r [r 7] , 0 # S e t fr a m e , show s a v in g o f r7
movb _ s t r _ + 0 (1 2 (f p)) , 0 (8 (f p)) # a r g u m e n t_ l <— s t r [a r g u m e n t _ 2]
movqd $ (1) ,r 7 # a r t i f i c i a l u s e o f r7
movd r 7 , rO # r e t u r n _ v a lu e <r- TRUE
e x i t [r7] # Unw ind fr a m e , r e s t o r e r7
r e t $ (0) # R e tu r n t o c a l l e r

V___

B-12 M IXED-LANGUAGE PROGRAMMING

Appendix C
ERROR DIAGNOSTICS

C.l INTRODUCTION
The GNX C compiler has a superior error handling mechanism. In most cases, the com­
piler continues to compile when an error is found. An error message is displayed, pro­
viding information on the type of error, the source filename, the line number location of
the error. Generally, the compiler attempts to minimize the effects of errors on compi­
lation.

C.2 ERROR MESSAGES
Errors are divided into six categories:

1. Limitation Errors
2. System Errors
3. Severe Errors
4. Syntax Errors
5. Caution Errors
6. Warnings

C.2.1 Error Messages Format
The general syntax of an error message is

filename, line m:c) [category] : message
Where:

filename is the source file name.
m is the line number location of the error.
c is a lower case letter used to mark the error position on the source line.

category is the error category.
The error message is followed by an echo of the source line. The errors are marked
with the appropriate lower case letter corresponding to the error message as displayed
in the syntax.

ERROR DIAGNOSTICS C -l

Example:

"stam.c", line 3: a) [severe]: "j" undefined
b) [severe]: illegal indirection
c) [syntax]: ')' may be missing before

for (j = 1; *i != 0; ;
----- a---------b-----c--------------------------------------

C.2.2 System Errors
System errors are related to the operating system or the environment in which the
compiler runs. For example:

[system]: Can't open f i l e filen am e
[system]: Ran out of memory

C.2.3 Limitation Errors
Limitation errors are caused by exceeding compiler limitations. Generally a limitation
error causes the suspension of code generation. In these cases the limitation message
includes "no object file produced". However, in some cases limitation messages are
warnings, and code generation continues.
The following is a complete list of limitation errors:
1. [Limitation]: array size too large; no object file produced

This error message is produced if an array size exceeds the maximal number
which can be represented in 29 bits (536870911).

2. [Limitation]: structure too large; no object file produced

This error message is produced if a structure size exceeds the maximal number
which can be represented in 29 bits (536870911).

3. [Limitation]: array dimension too large; no object file pro­
duced

This error message is produced if a number greater than the maximal number
which can be represented in 29 bits (536870911) is used for an array's dimen­
sion.

4. [Limitation]: cumulative size of structure members is too
large; no object file produced

C-2 ERROR DIAGNOSTICS

This error message is produced for structures for which the cumulative size of the
structure’s members exceeds the maximal number which can be represented in 29
bits (536870911).

5. [Limitation]: not enough space on frame for compiler-produced
temporaries; no object file produced

This error message is produced when the cumulative size of the local variables
and the temporary variables created by the compiler for computations exceeds the
maximal number which can be represented in 29 bits (536870911).

6. [Limitation]: cumulative size of local variables is too large;
no object file produced

This error message is produced when the cumulative size of the local variables
and the temporary variables created by the compiler for computations exceeds the
maximal number which can be represented in 29 bits (536870911).

7. [Limitation]: size too large for symbolic information, may
confuse the debugger

This error message is produced for objects (structures/unions or arrays) who’s size
is greater than the maximal number which can be represented in 16 bits
(65535). Code continues to be generated, however the operation of the debugger
may be affected.

8. [Limitation]: array dimension too large for symbolic informa­
tion; may confuse the debugger

This error message is produced if a number greater than the maximal number
which can be represented in 16 bits (65535) is used for an array’s dimension.
Code continues to be generated, however the operation of the debugger may be
affected.

9. [Limitation]: nesting too deep for initialization; no object
file produced

This error message is produced when an attempt is made to initialize an aggreate
type with initialization nesting deeper then 10 levels (for example: trying to ini­
tialize an array with 11 dimensions).

10. [Limitation]: cannot initialize double/float with a conversion
of address; no object file produced

This error message is produced when an attempt is made to initialize a
double/float identifier with an explicit conversion of an address.

11. [Limitation]: too many post-increments/decrements in expres­
sion; no object file produced

This error message is produced when an expression containing more than 20 post
increments/decrements is encountered.

ERROR DIAGNOSTICS C-3

When the compiler detects a syntactic error, an attempt is made to fix the error by
internally changing the input to a syntactically legal phrase. This is done in order to
continue compilation and produce a maximum number of useful diagnostics; no object
file is produced and it should not be used as a means to correct your program.
An error is fixed by the deletion, insertion or replacement of a token, or by the skipping
of a language phrase The appropriate action is selected by the compiler based on the
context of the source code, semantic information and a set of heuristics. Once a suc­
cessful change in the source code is introduced, a syntax error is reported to indicate
the change. If the change does not result in a legal syntactic phrase, the compiler skips
to a point where the text is synchronized with the language syntax.
NOTE: In some cases the change introduced by the compiler may not be

appropriate for your source code.
Examples:

1. Token deletion
"filename", line 1: a) [syntax]: Unexpected
int i,,j;
----- a--

C.2.4 Syntax Errors

The unexpected token ’, ’ was deleted internally in attempt to continue compila­
tion.

2. Token insertion
"filename", line 3: a) [syntax]: may be missing before '}'
i= i }
---- a---

The token V was inserted before the token ’}’ in an attempt to continue compila­
tion.

C-4 ERROR DIAGNOSTICS

3. Token replacement
11 filename", line 4: a

i ++]
------a--------------------------

[syntax]: ']' unexpected,
more appropriate

may be

The unexpected ’] ’ token was replaced with a ’ in an attempt to continue compi­
lation.

4. Skipping a language phrase
"stam.c", line 6: a) [syntax]: Unexpected "p", more errors may

follow... skipping until on line 13
xxxx ;p---------a ---

Indicates the beginning of the skipped phrase.

"stam.c"

f o o () {};
------------a

line 13: a) [syntax]:
line 6)

skipped until here (from

Indicates the end of the skipped phrase.
NOTE: Additional errors occasionally result from the fact that part o f the

program was skipped by the compiler.

C.2.5 Severe Errors
Severe errors are caused when the compiler detects semantic violations of the language
rules, where the programmer’s intention is not clear to the compiler. In this case, an
error message is displayed and code generation is terminated.
For example:

"stam.c", line 10:

foo(int, a){};
------- a --------------

a) [severe]: traditional and prototype
parameters cannot be mixed

ERROR DIAGNOSTICS C-5

C.2.6 Caution Errors
Caution errors are issued for erroneous language constructs which the compiler either
"thinks" may be on purpose or "guesses" the programmers intention. An error message
is displayed and generation of code continues. If the programmer is satisfied with the
compiler’s action, the program produced may be run.
For example, if i was declared as volatile int i ;:

"stam.c", line 2: a) [caution]: volatile pointer mismatch
int *p = &i;---------------a --

C.2.7 Warnings
Warning messages are issued for input which conforms to the language, but is deemed
to be inappropriate by the compiler in the context found. An error message is displayed
and generation of code continues.
For example:

"notreached.c", line 8: a) [warning]: statement not reached
i++;

-- a --

Warning messages can be disabled by the -w compiler option on UNIX systems
(/NOWARNING on VMS).

C-6 ERROR DIAGNOSTICS

Appendix D
COMPILER OPTIONS

D.l INTRODUCTION

This appendix contains tables for quick reference to the GNX—Version 4 C compiler
options. These tables list:

• Options to the compiler on UNIX and MS-DOS systems
• Options to the compiler on VMS systems
• Options to the compiler that pass to the C preprocessor on UNIX and MS-DOS sys­

tems
• Options to the compiler that pass to the C preprocessor on VMS systems
• Options to the compiler that pass to the linker

(Options that pass to the linker are relevant only for UNIX and MS-DOS systems.)

Rev 4.4 COMPILER OPTIONS D -l

Table D-l. U N IX and MS-DOS Operating System Options
Sheet 1 of 2

OPTION FUNCTION
@filename
-A

Reads compilation options from file (MS-DOS only)
Allocate variables as standard.

-aflags
-B

Generate runtime checks.
Add code for profile information gathering.

-c Suppress loading, force production of object file in file.o.

-d This option is useful only when compiling Pascal and FORTRAN 77 programs.
-Fflags
-f

Set optimization flags but do not call optimizer.
Use floating-point emulation library.

-g
-J width

Prepare symbolic debug information for debugger.
Force alignment boundary within structs to width.

-KC cpu
-KFfpu
-KBbus

Set target CPU.
Set target FPU.
Set target buswidth.

-1 lib Use lib as a program library.
-m Use m4 as the preprocessor for FORTRAN 77 and assembly files.
-n Put C source lines as comments into assembly output file.
-N [flags]nnn This option is useful when compiling FORTRAN 77 programs.

D-2 COMPILER OPTIONS Rev 4.4

Table D-l. UNIX Operating System Options
Sheet 2 of 2

OPTION FUNCTION
-0flags
-X

Perform optimizations according to flags.
Generate code that conforms to the Series 32000
architectural feature of modularity.

-P
-Q

Prepare profiling information for profiling.
Compile only, verify for syntax errors.

-R Put all literal strings in read-only memory.
-S Do not assemble, leave assembly in file.s.
-T This option is only useful when compiling FORTRAN 77 programs.
-V Verbose: list the subprograms as actually called by the driver.
-vn List the subprograms to be called, but do not actually execute them.
-Wx, options Pass options to compiler phase x. x can be p (C preprocessor), a (assembler), or 1 (linker).
-w Suppress warnings.
-w66 This option is only useful when compiling FORTRAN programs.
-Zc Use an alternate library.

COMPILER OPTIONS D-3

Table D-2. V M S Operating System Options
Sheet 1 of 2

OPTION FUNCTION
/ [NO JOBJECT [=fllename] [do not] Generate an object file during the compila­

tion process.
/ [NO JOPTIMIZE [=(flags [...])]
/CHECK [=(option [,...])]
/[NOJDEBUG

[do not] Perform optimizations [according to flags].
Generate run-time checks.
[do not] Prepare symbolic debug information for
debugger.

/[N O] GATHER
/[NO]PROFILE
/ [NO]ASM [=filename]

[do not] Add code for profile information gathering.
[do not] Prepare profiling information for profiling.
[do not] Generate an assembler file during the com­
pilation process.

/ [NO] ANNOTATE [do not] Put C source lines as comments into assem­
bly output file.

/ [NO]ROM_STRIN GS Put all literal strings in read-only memory.

/ALIGN [=width]
/ [NO JWARNING
/ TNO1 STANDARD

Force alignment boundary within structs to width.
[do not] Output warning diagnostics.
Allocate variables as standard.

D-4 COM PILER OPTIONS

Table D-2. V M S Operating System Options
Sheet 2 of 2

OPTION FUNCTION
/ [NO]PRE_PROCESSOR [do not]Run the source code through the cpp prepro­

cessor.
/[NO jVERBOSE [do not] List the compiler subprograms called by the

driver.
/[NO]VN [do not] List the subprograms to be called, but do not

actually call them.
/TARGET=(CPU=cpu) Set target CPU.
/TARGET=(FPU=/pu) Set target FPU.
/TARGET=(BUSWIDTH=ftws) Set target buswidth.
/ [NO JMODULAR Generate code that conforms to the Series 32000

architectural feature of modularity.
/ [NO]ERROR [=filename] [do not] Generate an error log file during the compi­

lation process.

Table D-3. Options Passed to the Preprocessor — UNIX and MS-DOS Systems

OPTION FUNCTION

@filename Reads compilation option from file (MS-DOS only)
-C Prevent the macro preprocessor from removing comments.
-D name=def
-D name

Define name to have the value def.
Define name to have the value 1.

-E Run only the preprocessor, send the result to stdout.
-Mir Look for include files in dir after looking in the current directory.
-M Generate makefile dependencies (cpp option).
-P Run only the preprocessor, send the result to a preprocessed source,

file.
-U name Undefine name.

Rev 4.4 COMPILER OPTIONS D-5

Table D-4. Options Passed to the Preprocessor — VMS Systems

OPTION FUNCTION

/ [NO JCOMMENT [do not] Prevent the preprocessor from removing
comments.

/DEFINE=(name [=def] [,...]) Define name to the preprocessor.
/ [NO] EXPAND [=fUename] [do not] Generate a source file after preprocessing.
/INCLUDE=(mcZude_dir [,...]) Look for include files in include_dir after looking for

them in the current directory.
/UNDEFINE=(rcame [,...]) Undefine name to the preprocessor.

Table D-5. Options Recognized and Passed to the Linker

OPTION FUNCTION
-e epname Define epname as entry point.
-o out Name the compilation output file out.
-r Retain relocation.
-s Strip.
-u symname Undefine symname in symbol table.
-V Print linker version information.
- X Do not preserve local symbols in the symbol table.
-i Intialize variables in runtime.

D-6 COM PILER OPTIONS

Appendix E
EMBEDDED PROGRAMMING HINTS

E.l INTRODUCTION
The GNX C compiler provides certain features which allow for programming of embed­
ded applications in C. These features help solve the following issues:
• full control over memory allocation - including RAM, ROM, stack space, trap and

interrupt vectors, peripheral memory-mapped control registers.
• startup actions performed at system reset - including initializing stack pointers,

configuration registers, peripheral control registers, and timers.
• initialization of RAM data variables - usually by copying from ROM or by zeroing.
• interrupt/trap handling

This appendix provides suggestions and examples for using the C compiler in embed­
ded applications.

E.2 VOLATILE AND CONST
The const and volatile type qualifiers can be used in embedded applications to
indicate ROM entities and memory mapped entities, respectively. A general overview
of the semantics and use of these qualifiers is explained below. For further detail see
Section E.2.5 and the ANSI C standard.

E.2.1 Const Type Qualifier
The value of an object (any lvalue expression) whose type includes the const qualifier
cannot be modified. The const qualifier can be used for several purposes:

1. Constant strings can be made a part of the program code and placed into
ROM.

2. Protecting variables from being changed. If during run-time an attempt is
made to change a const variable, a trap will occur.

A non-volatile global or static object declared as const, will be allocated in read-only
memory (the . text area) if it is initialized.

EM BEDD ED PROGRAM M ING H IN TS E -1

For example:
const int i = 137; /*t—1II

-H /*
i += 12; /*

i is defined as const */
this is illegal !! */
this is illegal !i */

The const syntax allows for the declaration of both ’constant pointers’ and ’pointers to
constants’. For example:

const char * pcc; /* pcc is defined as pointer to */
/* const char */

char * const cpc; /* cpc is defined as const pointer */
/* to char */

const char * const cpcc; /* cpcc is defined as const */
/* pointer to const char */

The types pointer to const object and const pointer to object, as in the
above example, have different meanings. The value of a pointer to const object
can be modified; however the value of the pointed object can not be modified. In con­
trast, the value of a const pointer to an object can not be modified; however
the value of the pointed object can be modified.
For example:

const char * pcc; /* pcc is defined as pointer to */
/* const char */

pcc ++;
*pcc = 17;

/* this is O.K. */
/* this is an error */

E.2.2 Volatile Type qualifier
The value of an object (any lvalue expression) whose type includes the volatile
qualifier can be used or changed by asynchronous events (such as I/O or interrupts).
Such an object should not be subject to any optimization that will change or delay
references to it.
By using the volatile qualifier, you can specify volatile objects. Therefore, full
optimization is carried out on all other objects, including global variables and pointer
dereferences.
E-2 EMBEDDED PROGRAMMING HINTS

For example, in the following code

volatile int i;
int j ;

foo() {

for (i=l ; i<j; i++) {

}
}

the compiler can put j in a register. But for i this optimization is not permitted.
The volatile syntax allows for the declaration of both Volatile pointers’ and
’pointers to volatiles’.
For example:

char * p c ; /*
volatile char * pvc ; /*

/*
char * volatile vpc; /*

/*
volatile char * volatile

/*
/*

pc is defined as pointer to char */
pvc is defined as pointer to */
volatile char */
vpc is defined volatile pointer */
to char */
vpvc ;
vpvc is defined as volatile */
pointer to volatile char */

The types pointer to volatile object and volatile pointer to object,
as in the above example, have different meanings. References to a pointer to
volatile object can be optimized; however references to the pointed object can not
be optimized. In contrast, references to a volatile pointer to an object can
not be optimized; however references to the pointed object can be optimized.

EM BEDD ED PROGRAMMING HINTS E-3

E.2.3 Memory Allocation
Memory allocation is performed by the operating system in native programming
environments such as UNIX. However, embedded applications require the ability to
control memory allocation. This is achieved by specifying in the linker directive file:

• the memory ranges of various program sections.
• the division of program sections into ROM and RAM.
• the sections to be copied from ROM to RAM at program startup.

A complete description of the linker directive file is provided in Chapter 3 of the GNX
Linker User’s Guide. Figure E-l is an example of a simple linker definition file for
defining two areas of memory.

MEMORY {
R OM : origin=0xl000 length=0x2000
RAM :

}
origin=0xl0000 length=0x80000

SECTIONS {
. text INTO(ROM) { * (. t e x t) }
.data INTO(RAM) { * (.data) }

}

Figure E-l. Example of Linker Directive File

E.2.4 Initialized C Variables
The C programming language allows compile-time initialization of global and static
variables. In addition, uninitialized global and static variable are defined by the C
language to have a zero value at program startup.
In native environment, initialization is handled by the compiler and the operating sys­
tem. In cross environment, when loading the program with the GNX debugger, the
debugger performs these initializations. However in embedded applications, all initial­
ized data resides in ROM and must be explicitly copied to RAM at program startup.
The GNX linker directive file and the GNX run-time library are used to automatically
initialize RAM variables.
Refer to the GNX Linker User’s Guide for further details.

E-4 EM BEDD ED PROGRAMMING H INTS

E.2.5 Programming Memory Mapped Devices
When writing code for the registers of memory mapped peripheral, correctly and
efficient accessing these entities can be problematic. However, the GNX C compiler
allows optimization of such code.
The volatile qualifier should be used to specify the memory mapped entities. This
allows the optimizer to perform optimizations without changing or delaying references
to these entities.

An example of the correct way to code memory mapped entities is:

#define ctrl_reg * ((volatile short *)0xffe8)

foo ()
{

return ctrl_reg;
}

This will result in:

movxwd @ (6 5 5 1 2) , rO
r e t 0

NOTE: Do not define a global pointer variable, such as
volatile short *ctrl_reg = (short *) CTRL_REG;
for memory mapped entities. Dereferencing such a pointer, as in
*ctrl_reg, will result in less efficient code.

E.3 ASM STATEMENTS
The asm keyword (see Section 3.3.2) provides for the unlimited insertion of assembly
language statements into any position in the code. It is recommended to use this
feature only for actions not codeable in standard C or using intrinsic functions.
Extreme care should be taken especially when asm is used in conjunction with the
optimizer. See Section 6.6.6 for details.
The following code defines a module table entry for a module named "handlers".

asm(" .modentry handlers ,sb=. static,lb=. link,pb=. text");

E M BEDD ED PROGRAMMING HINTS E-5

E.4 EXAMPLES OF PROGRAMMING WITH INTRINSIC FUNCTIONS
This section describes programming with intrinsic functions. More details can be
found in Chapter 8.

E.4.1 NS32CG16 bit instructions
An example of a graphic application based on certain special NS32CG16 core bit opera­
tions is illustrated in this section. The image is represented by a bit-map 80 bits wide
and 21 lines high. The picture is drawn by printing the bit-map in an ascii format in
the following way:

1. A set bit in the bit-map is represented by the character
2. A clear bit is represented by a space .

It is important to include the proper header file, with intrinsic routines declarations, in
your application. In this example, cgl6 . h is included.
The following definitions are used throughout the example:

#define PAGE_WIDTH_IN_BYTES 10
#define PAGE_WIDTH_IN_BITS (PAGE_WIDTH_IN_BYTES * 8)
#define PAGE_HEIGHT 21
#define Page(y,x) (page + (y)*PAGE_WIDTH_IN_BYTES + (x))

The bitmap is kept in the following char array:
char page[PAGE_WIDTH_IN_BYTES * PAGE_HEIGHT];

A *V’ is drawn in the upper-left part of the image using the _ sb itp s intrinsic function:
draw_a_v() {

in t o f f s e t = 3;
_ sb itp s (P a g e (2 ,0) , ^ o f f s e t ,7 ,PAGE_WIDTH_IN_BITS + 1);
_sbitps(Page(2,0),&offset,8 ,-PAGE_WIDTH_IN_BITS + 1) ;

The resulting image is shown in Figure E-2

E-6 EM BEDD ED PROGRAMMING HINTS

★ *

Figure E-2. The Image

A reversed image of "V’ figure is drawn by using the _bbor_s intrinsic function:
/*
* Copy a bit-block (reversed) containing the V, to
* the lower right corner of itself.
* Mask off the areas to the right and left of the image,
* to protect the image of the V drawn above.
*/
_bbor_s(Page (1 ,0), Page (9,2),3 ,10,0x0fffe,0x000Of,

PAGE_WIDTH_IN_BYTES-2,PAGE_WIDTH_IN_BYTES-2,2);

The resulting image is shown in Figure E-3.

EM BEDD ED PROGRAMMING H INTS E-7

★ ★*
★ ★ *★ •*•★ *★ ★ ★ ★ ★ ★ ★ ★ - k - k

*★★★ ★★★★★★★★★ ★★★★
★ **★*•*■*★ *★★★★ ★ ★ ★ ★ ★ ★ ★ ★ ★ *★ ★ ★ ★ ★ *★
★ ★★★★★★★ ★ ★•*•★*★★* + ★ ★ ★ ★ ★ ★ ★ ★ ★ **★ ★ ★ *★ ★ ★

Figure E-3. The Image with the Reversed Shape

To print the image in the format of the example, the intrinsic routine _ tb i t () (a gen­
eral 32000 instruction) is used:

E-8 E M BEDD ED PROGRAMMING H INTS

/*★
★ dump_as_ascii()

* Displays the bitmap "page" as an ascii picture.
* Each bit is displayed as a character:
* if it is ON, ' ' (space) if it is OFF.
*

★ _____________________________
#include <ns32000.h>
dump_as_ascii()
{

int line, offset;
char *pict;

*/

for (line = 0, pict = page;
line < PAGE_HEIGHT;

line++, pict += PAGE_WIDTH_IN_BYTES)
{

/*
* Use of tbit to test each bit on the current line.
*/

for (offset = 0; offset < PAGE_WIDTH_IN_BITS; offset++)
putchar(_tbit(offset, pict) ? : ' ');

putchar('\n');
}

}

The code is compiled using the following syntax:
UNIX environment
nmcc -KCG16 filename

VMS environment
NMCC /TARGET=(CPU=CG16) filename

E M BEDD ED PROGRAMMING HINTS E-9

E.4.2 NSGX320 specific instructions
An example of a part of an implementation of a digital FIR (Finite Impulse Response)
filter is illustrated in this section.
The following definitions of the types WCOMPLEX and DCOMPLEX (used in the example)
are found in gx3 2 0 . h (see Section 8.4.1):

typedef struct WCOMPLEX {
short re;
short im;

} WCOMPLEX;

typedef struct DCOMPLEX {
long re;
long im;

} DCOMPLEX;

This example shows a common operation in various DSP (Digital Signal Processing)
applications. The function performs a complex multiply and accumulate operation on
two complex vectors of length ten, and then scales down the complex result from 32 bit
to 16 bits. The C code is:

#include <gx320.h>

#define HALF 16384
#define SHIFT 15
WCOMPLEX b [10] ;
WCOMPLEX a [10];
WCOMPLEX c;
DCOMPLEX init_result = {0,0};
for_fir()
{

DCOMPLEX result;
int i ;

/* initialize result to 0 */
result = init_result;

for(i = 0 ; i < 10; i++)
_cmacd(kresult, a [i], b [i]);

/* now scale down from 32 bits back to 16 bits */
c.re = (result.re + HALF) » SHIFT ;
c .im = (result.im + HALF) >> SHIFT ;

}

E -10 EM BEDD ED PROGRAM M ING HINTS

The following code was produced for the for_fir() function, when compiled with
-KCGX320 and -O:

for_fir:
movd _init_result,rO
movd _init_result+(4
cmacd _a,_b
cmacd _a+ (4) ,__b+ (4)
cmacd _ a + (8),_b+(8)
cmacd _ a + (12),_b+(12)
cmacd _ a + (16),_b+(16)
cmacd _ a + (20),_b+(20)
cmacd _ a + (24),_b+(24)
cmacd _ a + (28),_b+(28)
cmacd _ a + (32),_b+(32)
cmacd _ a + (36),_b+(36)
movqd $ (0),tos
movqd $ (0),tos
movd rO,0 (sp)
movd rl,4 (sp)
movd 0 (sp),rO
addd $(16384),rO
ashd $(-15),rO
movw e o r o

movd 4 (sp),rl
addd $(16384),rl
ashd $(-15),rl
movw rl,_ c + (2)
cmpd tos,tos
ret 0

E.5 PROGRAMMING TRAP/INTERRUPT ROUTINES
The example used in this section is a clock display for the time of day. The routine
clock_handler handles a clock interrupt, which occurs TlCKS_PER_SECOND times
per second. The time display is updated every second.
Since the routine does not use floating-point registers, save_regs = int_regs is
specified in the pragma directive (i.e. only integer registers are saved). The saved
registers include all those used by the routine. Scratch registers are also saved because
the handler calls the routine update_time_display.
The C code for the clock interrupt handler is:

EM BEDDED PROGRAM M ING HINTS E - l l

void clock_int_routine(void)
{

static int counter;
static int hours;
static int minutes;
static int seconds;

counter++;
if (counter == TICKS_PER_SECOND)

{
seconds++;
counter = 0;
if (seconds == 60)

{
minutes++;
seconds = 0;
if (minutes == 60)

{
hours++;
minutes = 0;
if (hours == 24)

hours = 0;
}

}
update_time_display(hours,minutes, seconds);

}
}

#pragma interrupt(clock_int_routine,save_regs=int_regs);

Certain CPUs of the Series 32000/EP microprocessor family can be set to work in either
direct or indirect exception mode.
When direct exception mode is enabled the address of the trap handler (residing in the
interrupt dispatch table) is interpreted by the CPU as a pointer. The clock interrupt
entry in the interrupt dispatch table should be set to the address of
_clock_int_routine. The following line is inserted to the clock interrupt entry in
the initialization of the interrupt dispatch table

.double ©_clock_int_routine

When direct exception mode is disabled (or non existent), the address of the trap
handler (residing in the interrupt dispatch table) is interpreted by the CPU as an
E -12 EM BEDD ED PROGRAM M ING HINTS

external procedure descriptor (i.e. mod + offset). The clock interrupt entry in the inter­
rupt dispatch table should be set to the descriptor of _clock_int_routine. The fol­
lowing line should inserted to the clock interrupt entry in the initialization of the inter­
rupt dispatch table

.xpd _clock_int_routine

In addition the interrupt handler should be associated to a module table entry. For
more details on modular and direct exception mode see the Series 32000 instruction set
and the GNX Assembler manual.

EM BEDDED PROGRAM M ING H INTS E-13

Appendix F
GLOSSARY

.gnxrc (gnx.ini on VMS and MS-DOS)
A GNX target specification file that is used by GNX tools to obtain the CPU, FPU,
MMU, system bus-width, and OS target specifications.
Basic-block A sequence of consecutive statements with only one entry point and only
one exit point, at the beginning and end, respectively.
COFF Acronym for the Common Object File Format. This is the standard object file
format for the Unix System V operating system, and for the GNX software tools. A
COFF file contains machine code and data and additional information for relocation
and debugging purposes.
Code-generator A part of the compiler whose input is a module in a proprietary Inter­
mediate Representation (IR) and whose output is a module in assembly-language
which represents the same module.
Compilation unit The source files compiled to form a single object module.

Compiler driver A program that calls the compiler sub-components (i.e. cpp, front-end,
optimizer, code-generator, and assembler), thereby providing a single convenient inter­
face.
Const A C type qualifier that makes the value of an object unmodifiable.
Conversion Changing the data type of a value. Conversions are performed by the
compiler in assignments by adding code that changes the right-hand side operand’s
type to the left-hand side operand’s type. Conversions are also performed on parame­
ters passed to a function call.
Cpp An acronym for the C preprocessor.
Cross configuration When the compilation and execution of the compiled program are
done on different machines (the host and target machines are different).
DBUG GNX symbolic debugger. DBUG provides a window-oriented user interface for
both X-windows and ASCII terminals. It is used for the symbolic debugging of high
level and assembly language programs.
Declaration A coding sequence that specifies the type and storage class of one or more
identifiers.
Development board The 32000 based system used for developing/running programs
and user applications.

Rev 4.4 GLOSSARY F -l

Executable object file An executable object file is the final product of a linking process.
In an executable object file all external symbolic references have been resolved. The
executable object file is therefore in a form that can be executed on the Series 32000-
based target system.
Floating-point emulation library A library that performs floating-point operations.
Used for non-FPU systems.
Front end A part of the compiler that consists of phases primarily dependent on the
source language, and are largely independent of the target machine. These phases
usually include lexical and syntactical analysis, the creation of the symbol table,
semantic analysis, and the generation of the intermediate representation code (IR).
Host machine The machine on which the compiler runs.
IEEE standards An acronym for the Institute of Electrical and Electronics Engineer­
ing standards.

Initializer The part of a declaration that gives the initial value(s) for the identifier
being declared.
Keyword A word reserved by the language for identifying statements, operators,
types, or storage classes. Keywords may not be used as identifiers.
Linker A program that creates executable files by combining object files, performing
relocation and resolving external references. The linker also processes symbolic debug­
ging information.
Loop A language construct that executes a statement or block repeatedly.
Lvalue A language object whose contents can be modified or assigned a value.
Macro A statement that is used to bring a string(s) of frequently used instructions
into operation. Macros are expanded at compile-time by the preprocessor.
Monitor A simple operating-system usually burned on a PROM. A monitor provides
initialization and access to hardware devices and debugging aids for programs ran on a
development board.
Native configuration When the compilation and execution of the compiled program are
done on the same machine (the host and target machines are the same).
Object file A file that is the output of either the assembler or the linker. An object file
contains compiled code and data and additional information for relocation and debug­
ging purposes.
Optimization The process by which code quality is improved for faster execution or
better code density.
Optimizer A part of the compiler that improves the quality of generated code by
employing advanced techniques and algorithms. The optimizer performs all optimiza­
tions in the Intermediate Representation (IR) level.
Option The UNIX term for a parameter, specified on the command line, that is used
to control the utility.
F-2 GLOSSARY

Pcc An acronym for the Portable C Compiler. A C compiler developed by AT&T,
implementing the C language as described in Kerninghan and Ritchie’s book. This was
the de facto standard, on which many other C compilers were based.
Preprocessor A program that processes source text before the translation phase. This
process includes expanding macros and including files.
Qualifier The VMS term for a parameter, specified on the command line, that is used
to control the utility.
Run-time library A collection of useful routines (such as I/O routines or string han­
dling routines) supplied with the compiler in an archive format.
Safe register A register that is guaranteed to retain its value across a procedure call.
Scratch register A temporary register whose value may be changed by a procedure
call.
Statement A language element that performs an action. Statements consist of expres­
sions, assignments, compound statements (blocks), or a collection of statements
identified by keywords.
Target machine The machine on which the program being compiled will run.
Tokens A basic program element identified by the language lexical analyzer. Tokens
include identifiers, keywords, operators, and strings.
Volatile An attribute of a language object specifying that the object can have its value
changed in ways not under control of the implementation. Such an object will not be
part of any optimization that might add, delete, or delay any reference or modification
of the object.

GLOSSARY F-3

IND EX

/ASM 2-10
@ Compiler options 2-9 for debugging optimized code 6-10
_ prefix B-2 Asm statements 6-15
_ suffix B-3 Assembler B-6

Assembly program 2-2
Assignment

A of structures 3-3
AVAIL_SWAP 6-18

-A 2-6
-a 2-4, 2-15
abs 8-20 B
Absolute value 8-20
Absolute value instructions 8-3 -B 2-4, 7-4
Accumulation of profile information 7-2 Basic block

disabling 7-5 count printed by sprof 7-9, 7-10
Additional code for profile information 7-2 gathering profile information 7-2

in pfb_exit object file 7-3 sprof information 7-7
space considerations 7-6 Basic-block
time considerations 7-6 definition of F-l

Additional Compilation Options Jbicpsrw 8-2, 8-17
MS-DOS 2-9 Jbispsrw 8-2, 8-17

Additional guidelines Bit aligned word transfer 8-29
asm statements 6-15 Bit instructions 8-2, 8-21
floating-point computations 6-13 clear bit 8-4
improving code 6-12 find first set 8-6
integer variables 6-12 invert bit 8-4
local variables 6-12 set bit 8-4
optimizing for space 6-17 test bit 8-4
pointer usage 6-13 Bit Operations on the PSR 8-17
register allocation 6-16 Bitblt
setjmpO 6-16 direction 8-26
static functions 6-12 source inversion 8-26

Address taking suffixes 8-26
of intrinsic functions 8-2 BITBLT instructions 8-25

/ALIGN 2-11 Bit-field 8-7, 8-9
=1 for space optimization 6-17 Bit-field instructions 8-2, 8-21

Alignment 2-6,2-11 Bitfields 3-7, 4-1
Allocate variables as standard 2-6, 2-11 _bitwt 8-29
Allocation of memory E-4 Board
/ANNOTATE 2-10, 6-11 development F-l

for debugging optimized code 6-10 _bpt 8-3, 8-19
Annotated source file listing

by sprof 7-7
ANSIC C

extensions 3-1
ANSI C standard 3-1 -c 2-5
Application specific instruction set 8-1 -c 2-5
Argument C language extensions 1-3

reference B-3 Calling conventions
var B-3 in mixed language programming B-l

Argument stack standard A-lin calling sequence A-l Calling sequence 4-8, 5-10ASIS 8-1 Case sensitivity B-lAsm 3-6, E-5 Caution Errors C-6

IN D E X 1

_cbit 8-2, 8-4cbiti 8-2, 8-4CG16 8-1CG160 8-1cgl6.h 8-2CG-Core 8-1
Changing default optimization options 6-4Char 4-1/CHECK 2-10, 2-15
„cleanup

for profile gathering 7-5clear bit 8-2, 8-4
clear bit interlocked 8-2, 8-4close

for profile gathering 7-5_cmacd 8-40CMDDIR 2-19
_cmuld 8-39
Code generator 2-1, 2-2, 5-9, B-6
Code portability 4-1, 6-6
Code-generator

definition of F-l
CODE_MOTION optimization option 6-2, 6-5,

6-18COFF
definition of F-l

Coloring algorithm 5-8
Command line 2-2
.comment 3-7
/COMMENT 2-13
Common subexpression elimination 5-1, 5-6
Common subexpressions 6-14
Compatibility

PIT file and source file 7-10
Compilation

for profile information 7-2
Compilation options

UNIX 2-2, 2-4
VMS 2-9

Compilation process 2-1
Compilation time requirements 6-18
Compilation unit

definition of F-l
Compile but do not link 2-5
Compile leaving assembly files 2-5, 2-10
Compiler options

@ 2-9
-A 2-6
-a 2-4, 2-15
/ALIGN 2-11
/ANNOTATE 2-10
/ASM 2-10
-B 2-4
-C 2-5
-c 2-5
/CHECK 2-10, 2-15
/COMMENT 2-13
-D 2-7
/DEBUG 2-10

/DEFINE 2-13
-E 2-7
-e 2-8
/ERROR 2-12
/EXPAND 2-13
-F 2-4
-f 2-7
-g 2-4
/GATHER 2-10, 7-4
-I 2-7
/INCLUDE 2-13
-J 2-6
-K 2-6,2-14
-1 2-8
-M 2-7
-m 2-6
/MODULAR 2-11
-n 2-5
-0 2-4,6-3
-o 2-5
/OBJECT 2-9
/OPTIMIZE 2-10,6-3
-P 2-8
-p 2-4
/PRE_PROCESSOR 2-13
-Q 2-4
-R 2-5
-r 2-8
/ROM.STRINGS 2-10
-S 2-5
-s 2-8
/STANDARD 2-11
/TARGET 2-11
-U 2-8
-u 2-8
/UNDEFINE 2-13
-V 2-8
-v 2-6
/VERBOSE 2-11
-vn 2-6
/VN 2-11
-W 2-8
-w 2-6
/WARNING 2-11
-X 2-7
-x 2-8
-Z 2-6

Compiler structure 2-1
code generator 2-2
driver 2-1
front end 2-1
language parser 2-1
macro preprocessor 2-1
optimizer 2-1

Compiler driver
definition of F-l

Compiling mixed-language programs B-5
Compiling system code 6-7
Complex multiply and accumulate double 8-40

2 INDEX

Complex multiply double 8-39 Environment variables 2-19
Configuration AVAIL SWAP 6-18

cross F-l PITFILE 6-18, 7-3
native F-2 ermo

Const 3-2, E-l for profile gathering 7-5
definition of F-l Error

Constant folding 5-1, 5-2 detection C-l
Conversion recovery from C-l

definition of F-l /ERROR 2-12
Convert to bit pointer 8-11 etext
Copy propagation 5-2 for profile gathering 7-5
Count of source-line executions 7-7 Executable program 2-2
Cpp Executable object file

definition of F-l definition of F-2
Cross configuration _exit

definition of F-l for profile gathering 7-5
_cvtp 8-2,8-11 exit routine

for profile information 7-3
/EXPAND 2-13

D _extblt 8-23
Extensions

-D 2-7 $ sign in identifiers 3-7
Data flow analysis 5-2 ANSI C 3-1
db pfb exit.o 7-4 asm keyword 3-6
DBUG bitfields 3-7

definition of F-l const 3-2
Dead code removal 5-1, 5-5 enumerated type 3-3
/DEBUG 2-10 floating-point constants 3-2

disabling FIXED_FRAME optimization 6-10 for embedded programming 3-4
Debugging of optimized code 6-10 function prototype 3-1
Declaration ident 3-7

definition of F-l Interrupt/Trap Routines Support 3-4
Declaration conventions intrinsic routines 3-7

in mixed language programming B-l pragma 3-2
Default optimization options 6-3 signed keyword 3-2

changing 6-4 string concatenation 3-3
Define 2-7, 2-13 structure handling 3-3
/DEFINE 2-13 unsigned constants 3-3
Define entry point 2-8 volatile 3-2
Development board Extensions to structures 3-3

definition of F-l Extensions to the C language 3-1
Directive file External bit aligned block transfer 8-23

linker E-4 External functions B-4
Disabling profile information accumula­ External procedures B-4

tion 7-5 External variables B-4
Driver F-l _exti 8-7
Driver program 2-1 Extract bit-field 8-7

E F
-E 2-7 -F 2-4
-e 2-8 -f 2-7
Embed source lines as comments 2-5, 2-10 fabs 8-20
Embedded extensions 3-4 fclose
Embedded programming hints E-l for profile gathering 7-5
Embedded support 3-1 Features 1-3
Entry point B-5 ffabs 8-20
Enumerated type 3-3 _ffs 8-2

IND EX 3

ffsb 8-6 getenv
_ffsd 8-6 for profile gathering 7-5
_fTsw 8-6 Global variables B-4
fgets .gnxrc (gnx.ini on VMS and MS-DOS)

for profile gathering 7-5 definition of F-l
Filename conventions 2-3 GTS
Files 2-3 target setup 2-2

assembly 2-2 Guidelines on using the optimizer 6-1
executable 2-2 GX320 8-1
object 2-2 gx320.h 8-2

Find first set 8-2, 8-6
Fixed frame 5-1, 5-10
FIXED_FRAME optimization option 6-2, 6-5, H

6-8
-FI 8-1 Header files
-flag 8-3, 8-19 for intrinsic functions 8-2
FLOAT_FOLD optimization option 6-2, 6-5, 6-9 Hints
Floating-point arithmetic 4-10 for embedded programming E-l
Floating-point computations 6-13 Host machine
Floating-point constants 3-2 definition of F-2
Floating-point emulation 2-7, 2-18

Cross-Configuration/lJNIX system 2-18
native configuration 2-18 I
VAX/VMS system 2-19

Floating-point emulation library -I 2-7
definition of F-2 _ibit 8-2, 8-4

Flow optimizations 5-1, 5-4 #ident 3-7
fopen Identifiers

for profile gathering 7-5 $ sign 3-7
fprintf IEEE standards

for profile gathering 7-5 definition of F-2
fputs Implementation issues 4-1

for profile gathering 7-5 Importing routines and variables B-4
FRAME_ALLOCATION optimization Improved annotation 6-11

option 6-2, 6-5 /INCLUDE 2-13
Front end 2-1, B-6 INCLUDEPATH 2-19
Front end Incompatibilities with GNX C compiler

definition of F-2 version 3 1-5
Function call Induction variable elimination 5-1, 5-7

intrinsic 8-1 Initialization
Function prototype of structures 3-3

intrinsic functions 8-1 Initialization code B-5
Function return value A-2 Initialization of variables E-4
Functions Initializer

Function prototypes 3-1 definition of F-2
FX16 8-1 _ins 8-9

Insert bit-field 8-9
Instructions

G application specific 8-1
Integer variables 6-12

-s 2-4 Intermediate form 2-1
disabling -OF optimization 6-10 Interrupt and trap routines

/GATHER 2-10, 7-4 programming 3-4
Gather profile information 2-10 Interrupt handler routine
Gathering profile information 2-4, 7-2 programming examples E -ll
Generate an error log file 2-12 _interrupt_disable 8-17
Generate makefile dependencies 2-7 _interrupt_enable 8-17
Generate modular code 2-7, 2-11 Intrinsic function

redefinition 8-1

4 INDEX

Intrinsic functions 8-1
general description 8-1
NS32GX320 8-36
programming examples E-6
use 8-1

Intrinsic routines 3-7
Run-time parameter checks 2-16

invert bit 8-2, 8-4
Invocation syntax

MS-DOS 2-2
UNIX 2-2
VMS 2-9

_iob
for profile gathering 7-5

J
-J 2-6
-J1

for space optimization 6-17

K
-K 2-6
-KB1

for space optimization 6-17
Keyword

definition of F-2
Keywords

asm 3-6, E-5
const E-l
Signed 3-2
volatile E-2

L
-1 2-8
Language parser 2-1
Leave comments in 2-5, 2-13
Libc symbols

used for profile gathering 7-5
LIB PATH 2-19
Library function

reuse B-l
Library routines 6-8, B-5
Limitation Errors C-2
Linker 2-2 , 2-3, B-6

compiler options passed to 2-8
definition of F-2

Linker directive file E-4
example E-4

Linker version 2-8
Linking phase B-7
Literal strings in read-only memory 2-5, 2-10
Load and Store of Processor Registers 8-16
Load Processor Registers 8-2

Local variables 6-12
LongjmpO 6-16
Loop

definition of F-2
Loop invariant code motion 5-1
Loop invariant expressions 5-6
Loop unrolling 5-1, 5-4
LOOP_UNROLLING optimization option 6-2,

6-5
Low-level interface 6-8

relying on frame structure 6-8
relying on register order 6-8
using asm statements 6-8

_lpr 8-2, 8-16
Lvalue

definition of F-2

M
-M 2-7
-m 2-6
Machine

host F-2
target F-3

Macro
definition of F-2

Macro preprocessor 2-1
_mactd 8-41
Main program B-5
Memory allocation 4-9, E-4
Memory layout optimizations 5-1, 5-10
Memory mapped devices

programming E-5
Memory representation 4-1
Mixed-language programming 2-3, 4-8, B -l

Compilation on UNIX operating systems B-6
Compilation on VMS operating systems B-7

mktemp
for profile gathering 7-5

/MODULAR 2-11
with profile information 7-4

Monitor
definition of F-2

Move multiple pattern 8-30
Move multiple pattern with update 8-31
Move String 8-13
Move String Translating Bytes 8-14
_movmp 8-30
_movmp_upd 8-31
_movs 8-2
_movsi 8-13
_movst 8-2, 8-14
MS-DOS

Additional Compilation Options 2-9
invocation syntax 2-2

Multiply and accumulate twice double 8-41
Multiply word to double 8-38
_mulwd 8-38

IND EX 5

N Runtime feedback 7-11
strength reduction 5-1

-n 2-5, 6-11 value propagation 5-1
for debugging optimized code 6-10 Optimize 2-4, 2-10Name sharing /OPTIMIZE 2-10, 6-3
in mixed language programming B-l CODE_MOTION 6-2, 6-5, 6-18

Native configuration FIXED_FRAME 6-2, 6-5, 6-8
definition of F-2 FLOAT_FOLD 6-2, 6-5, 6-9NIL pointer checks 2-17 FRAME_ALLOCATION 6-2, 6-5

No local symbols in symbol table 2-8 LOOPJJNROLLING 6-2, 6-5
NOOPT optimization option 6-2, 6-5, 6-17 NOOPT 6-2, 6-5, 6-17
NO_STANDARD_LIBRARIES 8-1 REGISTERS_ALLOCATION 6-2, 6-5, 6-18
ns32000.h 8-2 RUNTIME_FEEDBACK 6-2, 6-5, 6-17
NS32CG16 8-1 SPEED_OVER_SPACE 6-2, 6-5, 6-17
NS32CG160 8-1 STANDARD LIBRARIES 6-2, 6-5, 6-8
NS32FX16 8-1 USER REGISTERS 6-2, 6-5, 6-8, 6-16
NS32GX320 8-1 VOLATILE 6-7

intrinsic functions 8-36 VOLATILE optimization 6-2, 6-5
typedefs for intrinsic functions 8-37 Optimizer 2-1, 5-2, B-6

definition of F-2
Optimizing for space 6-17

O Option
definition of F-2

-0 2-4,6-3 Options 2-4
/OBJECT 2-9 alignment 2-6
Object code program 2-2 Alignment 2-11
Object file allocate variables as standard 2-6, 2-11

definition of F-2 compile but do not link 2-5
-01 8-1 compile leaving assembly files 2-5, 2-10
Old fashioned compound assignment 3-4 debug information 2-4, 2-10
Old fashioned initialization 3-4 define 2-7, 2-13
Operations On Dedicated Registers 8-2 define entry point 2-8
Optimization embed source lines as comments 2-5, 2-10

definition of F-2 floating-point emulation 2-7
Optimization flags 6-1 gather profile information 2-4, 2-10
Optimization options generate error log file 2-12

changing default 6-4 generate makefile dependencies 2-7
default on 6-3 generate modular code 2-7, 2-11
default on VMS 6-3 leave comments in 2-5, 2-13
MS-DOS systems 6-3 linker version 2-8

Optimization options on the command line no local symbols in symbol table 2-8
UNIX systems 6-3 optimize 2-4, 2-10
VMS systems 6-3 pass options 2-8

Optimization techniques 5-1 pass to C preprocessor 2-13
Optimizations profile information 2-4

common subexpression elimination 5-1 quick compilation 2-4
constant folding 5-1 read-only memory 2-5, 2-10
dead code removal 5-1 redirect output to .i file 2-8
fixed frame 5-1 rename output file 2-5
flow optimizations 5-1 retain relocation 2-8
induction variable elimination 5-1 run cpp only 2-7, 2-13
loop invariant code motion 5-1 run-time checks 2-4, 2-10
loop unrolling 5-1 set target 2-6, 2-11, 2-14
memory layout optimizations 5-1 show do not execute 2-6, 2-11
partial redundancy elimination 5-1 specify include file directory 2-7, 2-13
peephole optimizations 5-1 specify program library 2-8
redundant assignment elimination 5-1 strip 2-8
register allocation 5-1 undefine 2-8, 2-13
runtime feedback 5-1, 5-11, 6-17 undefine symbol in symbol table 2-8

6 IND EX

use alternative library 2-6 Quse the m4 preprocessor 2-6
verbose 2-6,2-11 -Q 2-4
warning diagnostics 2-6, 2-11 Qualifier

Order of evaluation 4-9 definition of F-3
Overview 1-1 Quick compilation 2-4

P R
-P 2-8 -R 2-5
-P 2-4 -r 2-5, 2-8
Partial redundancy 5-6 Recommended reference book 1-2
Partial redundancy elimination 5-1 Redefinition
Pass options to compilation phase 2-8 of intrinsic functions 8-1
Pass source file to the C preprocessor 2-13 Redirect output to .i file 2-8
Pcc 3-1 Redundant assignment elimination 5-1, 5-2

definition of F-3 Register
Peephole optimizations 5-1, 5-9 Bit Operations on the PSR 8-17
pfb_exit.o and pfb_exit.obj 7-3 Load and Store of Processor Registers 8-16
Pgen 7-3 Set Configuration Register 8-18running on VMS 7-5 Register allocation 5-8, 6-16
PIT file 7-2, 7-3 for intrinsic functions 8-1
PITFILE 2-19, 6-18, 7-3 Register allocation by coloring 5-1Pointer usage 6-13 Register parameters 5-9
Pointers Register variables 4-9

to void 3-2 REGISTER_ALLOCATION optimization
Portability 4-1, 6-6 option 6-2, 6-5, 6-18
Portable C compiler 3-1 Registers
Pragma 3-2 safe 5-8, F-3
Prepare debug information 2-4, 2-10 saving A-2Prepare profile information 2-4 scratch 5-8, F-3Preprocessor 2-1 Reliance on naive algebraic relations 6-9

compiler options passed to 2-7 rename
definition of F-3 for profile gathering 7-5m4 2-6 Rename the output file 2-5
macro 2-1, 2-7 Retain relocation 2-8/PRE_PROCESSOR 2-13 Return value 4-10, 6-6

Preprocessor Directive Returned value A-2
pragma 3-2 rindex

Profile information 7-1 for profile gathering 7-5
customized _exit routine 7-3 /ROM.STRINGS 2-10gathering 7-2 _rot 8-2

Profilers Rotate 8-12
sprof 7-7 _roti 8-12

Programming hints Run cpp only 2-7, 2-13
for embedded programming E-l Run-time checks 2-4, 2-10, 2-15

Programming in other languages 4-8 array index 2-16
Programming memory mapped devices E-5 intrinsic function parameters 8-1
Programming trap and interrupt routines 3-4 Intrinsic routines parameters 2-16
PSR Run-Time checks

L and F flags after _tbits 8-35 NIL pointer 2-17
Runtime feedback optimization 5-1, 5-11, 6-17,

7-11
Run-time library 6-8
RUNTIME_FEEDBACK optimization

option 6-2, 6-5, 6-17
Run-time library

definition of F-3

IND EX 7

s sscanf
for profile gathering 7-5

-s 2-5 Stack
for debugging optimized code 6-10 in calling sequence A-l

-s 2-8 /STANDARD 2-11
Safe register 5-8 Standard calling convention A-l

definition of F-3 STANDARD_LIBRARIES optimization
Saving registers A-2 option 6-2, 6-5, 6-8
_sbit 8-2, 8-4 Statement
_sbiti 8-2, 8-4 definition of F-3
_sbitps 8-33 Static functions 6-12
_Sbits 8-32 Store Processor Registers 8-2
Scratch register 5-8 strcpy

definition of F-3 for profile gathering 7-5
_select_supervisor_stack 8-17 Strength reduction 5-1, 5-6, 5-10
_select_user_stack 8-17 String Operations 8-2
Series 32000 microprocessors Strings

NS32CG16 8-1 string concatenation 3-3
NS32CG160 8-1 Strip 2-8
NS32FX16 8-1 Structure returning function 4-8, 6-6
NS32GX320 8-1 Structures 3-3

set bit 8-2, 8-4 _svc 8-3, 8-19
set bit interlocked 8-2, 8-4 sys_errlist
Set bit perpendicular string 8-33 for profile gathering 7-5
Set bit string 8-32 sys_nerr
Set Configuration Register 8-18 for 7-5
Set target configuration 2-6, 2-11, 2-14 System code 6-7
_setcfg 8-2, 8-18 System Errors C-2
SetjmpO 6-16
Severe Errors C-5
Show, but do not execute 2-6,2-11 T
Signed 3-2
Single bit instructions 8-2, 8-4, 8-21 /TARGET 2-11

clear bit 8-2, 8-4 BUS=1 for space optimization 6-17
clear bit interlocked 8-2 Target setup 2-2
find first set 8-6 Target machine
invert bit 8-2, 8-4 definition of F-3
set bit 8-2, 8-4 _tbit 8-2, 8-4
set bit interlocked 8-2 _tbits 8-34
test bit 8-2, 8-4 effect on PSR L and F flags 8-35

Specify a program library 2-8 test bit 8-2, 8-4
Specify directory for included files 2-7, 2-13 Test bit string 8-34
Speed over space 5-10 Timing assumptions 6-8
SPEED_OVER_SPACE optimization TMPDIR 2-19

option 6-2, 6-5, 6-17 Tokens
_spr 8-2, 8-16 definition of F-3
sprintf Trap Activating Instructions 8-3, 8-19

for profile gathering 7-5 Trap and interrupt routines
Sprof 7-7 programming 3-4
Sprof options Trap handler routine

-d 7-9 programming examples E -ll
/DIRECTORY 7-9 Type qualifiers
-e 7-9 const 3-2
/EXECUTABLE 7-9 volatile 3-2
-f 7-9 Type representations 4-1
/FORMAT 7-9 typedefs
-0 7-9 for NS32GX320 intrinsic functions 8-37
/OUTPUT 7-9 Types and conversions 4-2
-P 7-9

8 INDEX

u Xpfb_exit.o and Xpfb_exit.obj 7-4

-U 2-8
-u 2-8
Undefine 2-8,2-13
/UNDEFINE 2-13
Undefine symbol in symbol table 2-8
Undefined behavior 4-10
Undetected program errors 6-6

failing to declare a function 6-6
relying on memory allocation 6-6
uninitialized local variables 6-6

UNIX
invocation syntax 2-2

unlink
for 7-5

Unsigned constants 3-3
Use alternative library 2-6
Use the m4 preprocessor 2-6
USER_REGISTERS optimization option 6-2,

6-5, 6-8, 6-16

Z
-Z 2-6

V
-V 2-8
- V 2-6
Value propagation 5-1, 5-2
Variable and structure alignment 4-2
Variable initialization E-4
Verbose 2-6,2-11
/VERBOSE 2-11
VMS

invocation syntax 2-9
-vn 2-6
/VN 2-11
Void 3-2
Volatile 3-2, E-l, E-2

definition of F-3
VOLATILE optimization option 6-2, 6-5, 6-7
Volatile variables 6-7

w
-W 2-8
-w 2-6, C-6
/WARNING 2-11, C-6
Warning diagnostics 2-6,2-11
Warnings C-6
Writing Mixed-Language Programs B-l

X
-X 2-7

with profile information 7-4
- X 2 - 8

Xdb_pfb_exit.o 7-4

IN D E X 9

w

	TOP
	GNX Version - 4.4 C Optimizing Cross-Compiler Language Development Tools for MS-DOS® Release Letter - NSC Part Number: 433511225-001
	PREFACE
	CONTENTS
	1. GENERAL DESCRIPTION.
	2. RELEASE PACKAGE CONTENTS
	3. INSTALLATION PROCEDURE
	3.1 INSTALLING THE PACKAGE
	3.2 BUILDING DRUG’S SERIAL I/O CONNECTION TO TARGET
	3.2.1 Installation for the HP 64772/8/9 ISE Using Serial I/O
	3.3 INSTALLING PC/TCP NETWORK SOFTWARE
	3.4 BUILDING DRUG’S ETHERNET CONNECTION TO TARGET

	4. COMPATIBILITY ISSUES
	5. LIMITATIONS
	6. KNOWN SOFTWARE ERRORS
	7. HINTS
	8. LIFE SUPPORT POLIC

	GNX Version 4.4 C Optimizing Compiler Reference Manual - NSC Publication Number 424010516-404
	REVISION RECORD
	PREFACE
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 COMPILATION PROCESS
	Chapter 3 EXTENSIONS TO THE C LANGUAGE
	Chapter 4 IMPLEMENTATION ISSUES
	Chapter 5 OPTIMIZATION TECHNIQUES
	Chapter 6 GUIDELINES ON USING THE OPTIMIZER
	Chapter 7 PROFILE INFORMATION
	Chapter 8 INTRINSIC FUNCTIONS
	Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS
	Appendix B MIXED-LANGUAGE PROGRAMMING
	Appendix C ERROR DIAGNOSTICS
	Appendix D COMPILER OPTIONS
	Appendix E EMBEDDED PROGRAMMING HINTS
	Appendix F GLOSSARY
	INDEX

	Bottom

